686 research outputs found

    Modelling transport and deposition of caesium and iodine from the Chernobyl accident using the DREAM model

    Get PDF
    International audienceA tracer model, DREAM (the Danish Rimpuff and Eulerian Accidental release Model), has been developed for modelling transport, dispersion and deposition (wet and dry) of radioactive material from accidental releases, as the Chernobyl accident. The model is a combination of a Lagrangian model, that includes the near source dispersion, and an Eulerian model describing the long-range transport. The performance of the transport model has previously been tested within the European Tracer Experiment, ETEX, which included transport and dispersion of an inert, non-depositing tracer from a controlled release. The focus of this paper is the model performance with respect to the deposition of 137Cs, 134Cs and 131I from the Chernobyl accident, using different relatively simple and comprehensive parameterizations. The performance, compared to measurements, of different combinations of parameterizations of wet and dry deposition schemes has been evaluated, using different statistical tests

    Modelling of mercury with the Danish Eulerian Hemispheric Model

    No full text
    International audienceA new 3-D mercury model has been developed within the Danish Arctic Monitoring and Assessment Programme (AMAP). The model is based on the Danish Eulerian Hemispheric Model, which in the original version has been used to study the transport of SO2, SO42? and Pb into the Arctic. It was developed for sulphur in 1990 and in 1999 also lead was included. For the current study a chemical scheme for mercury has been included and the model is now applied to the mercury transport problem. Some experiments with the formulation of the mercury chemistry during the Polar Sunrise are carried out in order to investigate the observed depletion. Some of the main conclusions of the work described in this paper are that atmospheric transport of mercury is a very important pathway into the Arctic and that mercury depletion in the Arctic troposphere during the Polar Sunrise contributes considerably to the deposition of mercury in the Arctic

    Modelling of Mercury in the Arctic with the Danish Eulerian Hemispheric Model

    No full text
    International audienceA new 3-D mercury model has been developed within the Danish Arctic Monitoring and Assessment Programme (AMAP). The model is based on the Danish Eulerian Hemispheric Model, which in the original version has been used to study the transport of SO2, SO42- and Pb into the Arctic. It was developed for sulphur in 1990 and in 1999 also lead was included. For the current study a chemical scheme for mercury has been included and the model is now applied to the mercury transport problem. Some experiments with the formulation of the mercury chemistry during the Polar Sunrise are carried out in order to investigate the observed depletion. Some of the main conclusions of the work described in this paper are that atmospheric transport of mercury is a very important pathway into the Arctic and that mercury depletion in the Arctic troposphere during the Polar Sunrise contributes considerably to the deposition of mercury in the Arctic

    Modelling atmospheric transport of ?-hexachlorocyclohexane in the Northern Hemispherewith a 3-D dynamical model: DEHM-POP

    No full text
    International audienceThe Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The ?-isomer of the pesticide hexachlorocyclohexane (?-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of ?-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange processes of POPs

    Modelling atmospheric transport of persistent organic pollutants in the Northern Hemisphere with a 3-D dynamical model: DEHM-POP

    No full text
    International audienceThe Danish Eulerian Hemispheric Model (DEHM) is a 3-D dynamical atmospheric transport model originally developed to describe the atmospheric transport of sulphur into the Arctic. A new version of the model, DEHM-POP, developed to study the atmospheric transport and environmental fate of persistent organic pollutants (POPs) is presented. During environmental cycling, POPs can be deposited and re-emitted several times before reaching a final destination. A description of the exchange processes between the land/ocean surfaces and the atmosphere is included in the model to account for this multi-hop transport. The ?-isomer of the pesticide hexachlorocyclohexane (?-HCH) is used as tracer in the model development. The structure of the model and processes included are described in detail. The results from a model simulation showing the atmospheric transport for the years 1991 to 1998 are presented and evaluated against measurements. The annual averaged atmospheric concentration of ?-HCH for the 1990s is well described by the model; however, the shorter-term average concentration for most of the stations is not well captured. This indicates that the present simple surface description needs to be refined to get a better description of the air-surface exchange proceses of POPs

    Assimilation of OMI NO<sub>2</sub> retrievals into the limited-area chemistry-transport model DEHM (V2009.0) with a 3-D OI algorithm

    Get PDF
    Data assimilation is the process of combining real-world observations with a modelled geophysical field. The increasing abundance of satellite retrievals of atmospheric trace gases makes chemical data assimilation an increasingly viable method for deriving more accurate analysed fields and initial conditions for air quality forecasts. We implemented a three-dimensional optimal interpolation (OI) scheme to assimilate retrievals of NO2 tropospheric columns from the Ozone Monitoring Instrument into the Danish Eulerian Hemispheric Model (DEHM, version V2009.0), a three-dimensional, regional-scale, offline chemistry-transport model. The background error covariance matrix, B, was estimated based on differences in the NO2 concentration field between paired simulations using different meteorological inputs. Background error correlations were modelled as non-separable, horizontally homogeneous and isotropic. Parameters were estimated for each month and for each hour to allow for seasonal and diurnal patterns in NO2 concentrations. Three experiments were run to compare the effects of observation thinning and the choice of observation errors. Model performance was assessed by comparing the analysed fields to an independent set of observations: ground-based measurements from European air-quality monitoring stations. The analysed NO2 and O3 concentrations were more accurate than those from a reference simulation without assimilation, with increased temporal correlation for both species. Thinning of satellite data and the use of constant observation errors yielded a better balance between the observed increments and the prescribed error covariances, with no appreciable degradation in the surface concentrations due to the observation thinning. Forecasts were also considered and these showed rather limited influence from the initial conditions once the effects of the diurnal cycle are accounted for. The simple OI scheme was effective and computationally feasible in this context, where only a single species was assimilated, adjusting the three-dimensional field for this compound. Limitations of the assimilation scheme are discussed

    Impacts of climate change on air pollution levels in the Northern Hemisphere with special focus on Europe and the Arctic

    Get PDF
    International audienceThe response of a selected number of chemical species is inspected with respect to climate change. The coupled Atmosphere-Ocean General Circulation Model ECHAM4-OPYC3 is providing meteorological fields for the Chemical long-range Transport Model DEHM. Three selected decades (1990s, 2040s and 2090s) are inspected. The 1990s are used as a reference and validation period. In this decade an evaluation of the output from the DEHM model with ECHAM4-OPYC3 meteorology input data is carried out. The model results are tested against similar model simulations with MM5 meteorology and against observations from the EMEP monitoring sites in Europe. The test results from the validation period show that the overall statistics (e.g. mean values and standard deviations) are similar for the two simulations. However, as one would expect the model setup with climate input data fails to predict correctly the timing of the variability in the observations. The overall performance of the ECHAM4-OPYC3 setup as meteorological input to the DEHM model is shown to be acceptable according to the applied ranking method. It is concluded that running a chemical long-range transport model on data from a "free run" climate model is scientifically sound. From the model runs of the three decades, it is found that the overall trend detected in the evolution of the chemical species, is the same between the 1990 decade and the 2040 decade and between the 2040 decade and the 2090 decade, respectively. The dominating impacts from climate change on a large number of the chemical species are related to the predicted temperature increase. Throughout the 21th century the ECHAM4-OPYC3 projects a global mean temperature increase of 3 K with local maxima up to 11 K in the Arctic winter based on the IPCC A2 emission scenario. As a consequence of this temperature increase, the temperature dependent biogenic emission of isoprene is predicted to increase significantly over land by the DEHM model. This leads to an increase in the O3 production and together with an increase in water vapor to an increase in the number of free OH radicals. Furthermore this increase in the number of OH radicals contributes to a significant change in the typical life time of many species, since OH are participating in a large number of chemical reactions. It is e.g. found that more SO42? will be present in the future over the already polluted areas and this increase can be explained by an enhanced conversion of SO2 to SO42?

    Operational mapping of atmospheric nitrogen deposition to the Baltic Sea

    No full text
    International audienceA new model system for mapping and forecasting nitrogen deposition to the Baltic Sea has been developed. The system is based on the Lagrangian variable scale transport-chemistry model ACDEP (Atmospheric Chemistry and Deposition model), and aims at delivering deposition estimates to be used as input to marine ecosystem models. The system is tested by comparison of model results to measurements from monitoring stations around the Baltic Sea. The comparison shows that observed annual mean ambient air concentrations and wet depositions are well reproduced by the model. Diurnal mean concentrations of NHx (sum of NH3 and NH4+) and NO2 are fairly well reproduced, whereas concentrations of total nitrate (sum of HNO3 and NO3-) are somewhat overestimated. Wet depositions of nitrate and ammonia are fairly well described for annual mean values, whereas the discrepancy is high for the monthly mean values and the wet depositions are rather poorly described concerning the diurnal mean values. The model calculations show that the annual atmospheric nitrogen deposition has a pronounced south--north gradient with depositions in the range about 1.0 T N km-2 in the south and 0.2 T N km-2 in the north. The results show that in 1999 the maximum diurnal mean deposition to the Danish waters appeared during the summer in the algae growth season. For the northern parts of the Baltic the highest depositions were distributed over most of the year. Total deposition to the Baltic Sea was for the year 1999 estimated to 318 kT N for an area of 464 406 km2 equivalent to an average deposition of 684 kg N/km2

    IC 751: a new changing-look AGN discovered by NuSTAR

    Get PDF
    We present the results of five NuSTAR observations of the type 2 active galactic nucleus (AGN) in IC 751, three of which were performed simultaneously with XMM-Newton or Swift/XRT. We find that the nuclear X-ray source underwent a clear transition from a Compton-thick (N H≃2×1024 cm−2N_{\rm\,H}\simeq 2\times 10^{24}\rm\,cm^{-2}) to a Compton-thin (N H≃4×1023 cm−2N_{\rm\,H}\simeq 4\times 10^{23}\rm\,cm^{-2}) state on timescales of ≲3\lesssim 3 months, which makes IC 751 the first changing-look AGN discovered by NuSTAR. Changes of the line-of-sight column density at a ∼2σ\sim2\sigma level are also found on a time-scale of ∼48\sim 48 hours (ΔN H∼1023 cm−2\Delta N_{\rm\,H}\sim 10^{23}\rm\,cm^{-2}). From the lack of spectral variability on timescales of ∼100\sim 100 ks we infer that the varying absorber is located beyond the emission-weighted average radius of the broad-line region, and could therefore be related either to the external part of the broad-line region or a clumpy molecular torus. By adopting a physical torus X-ray spectral model, we are able to disentangle the column density of the non-varying absorber (N H∼3.8×1023 cm−2N_{\rm\,H}\sim 3.8\times 10^{23}\rm\,cm^{-2}) from that of the varying clouds [N H∼(1−150)×1022 cm−2N_{\rm\,H}\sim(1-150)\times10^{22}\rm\,cm^{-2}], and to constrain that of the material responsible for the reprocessed X-ray radiation (N H∼6×1024 cm−2N_{\rm\,H} \sim 6 \times 10^{24}\rm\,cm^{-2}). We find evidence of significant intrinsic X-ray variability, with the flux varying by a factor of five on timescales of a few months in the 2-10 and 10-50 keV band.Comment: Accepted for publication in ApJ, 11 pages, 6 figure

    The nature of the torus in the heavily obscured AGN Markarian 3: an X-ray study

    Get PDF
    In this paper we report the results of an X-ray monitoring campaign on the heavily obscured Seyfert galaxy Markarian 3 carried out between the fall of 2014 and the spring of 2015 with NuSTAR, Suzaku and XMM-Newton. The hard X-ray spectrum of Markarian 3 is variable on all the time scales probed by our campaign, down to a few days. The observed continuum variability is due to an intrinsically variable primary continuum seen in transmission through a large, but still Compton-thin column density (N_H~0.8-1.1×\times1024^{24} cm−2^{-2}). If arranged in a spherical-toroidal geometry, the Compton scattering matter has an opening angle ~66 degrees and is seen at a grazing angle through its upper rim (inclination angle ~70 degrees). We report a possible occultation event during the 2014 campaign. If the torus is constituted by a system of clouds sharing the same column density, this event allows us to constrain their number (17±\pm5) and individual column density, [~(4.9±\pm1.5)×\times1022^{22} cm−2^{-2}]. The comparison of IR and X-ray spectroscopic results with state-of-the art "torus" models suggests that at least two thirds of the X-ray obscuring gas volume might be located within the dust sublimation radius. We report also the discovery of an ionized absorber, characterised by variable resonant absorption lines due to He- and H-like iron. This discovery lends support to the idea that moderate column density absorbers could be due to clouds evaporated at the outer surface of the torus, possibly accelerated by the radiation pressure due to the central AGN emission leaking through the patchy absorber.Comment: Accepted for publication in MNRAS, 17 pages, 11 figures, 5 table
    • …
    corecore