730 research outputs found
Recommended from our members
The ghost sex-life of the paedogenetic beetle Micromalthus debilis
Genetic and sexual systems can be evolutionarily dynamic within and among clades. However, identifying the processes responsible for switches between, for instance, sexual and asexual reproduction, or cyclic and non-cyclic life histories remains challenging. When animals evolve parthenogenetic reproduction, information about the sexual mating system becomes lost. Here we report an extraordinary case where we have been able to resurrect sexual adults in a species of beetle that reproduces by parthenogenetic paedogenesis, without the production of adults. Via heat treatment, we were able to artificially induce adult beetles of Micromalthus debilis in order to describe its pre-paedogenetic mating system. Adults showed a highly female biased sex ratio, out-breeding behaviour, and sex-role reversal. Paedogenetic larvae of Micromalthus are infected with the endosymbiotic bacteria Rickettsia and Wolbachia. Clear signs of vestigialization in adults are concurrent with the loss of adults. Our data suggest an ancient female sex ratio bias that predated the loss of adults, perhaps associated with endosymbionts. We propose a model for the transition from a haplodiploid cyclical parthenogenetic life history to parthenogenetic paedogenesis. Paedogenetic development induces a new mechanism of sex ratio bias in midges, wasps and beetles
Hard x ray spectroscopy and imaging by a reflection zone plate in the presence of astigmatism
The feasibility of an off axis x ray reflection zone plate to perform wavelength dispersive spectroscopy, on axis point focusing, and two dimensional imaging is demonstrated by means of one and the same diffractive optical element DOE at a synchrotron radiation facility. The resolving power varies between 30 and 400 in the range of 7.6 keV to 9.0 keV, with its maximum at the design energy of 8.3 keV. This result is verified using an adjustable entrance slit, by which horizontal H and vertical V focusing to 0.85 amp; 956;m H and 1.29 amp; 956;m V is obtained near the sagittal focal plane of the astigmatic configuration. An angular and axial scan proves an accessible field of view of at least 0.6 arcmin 0.8 arcmin and a focal depth of plus minus 0.86 mm. Supported by the grating efficiency of around 17.5 and a very short pulse elongation, future precision x ray fluorescence and absorption studies of transition metals at their K edge on an ultrashort timescale could benefit from our finding
Tunneling broadening of vibrational sidebands in molecular transistors
Transport through molecular quantum dots coupled to a single vibration mode
is studied in the case with strong coupling to the leads. We use an expansion
in the correlation between electrons on the molecule and electrons in the leads
and show that the tunneling broadening is strongly suppressed by the
combination of the Pauli principle and the quantization of the oscillator. As a
consequence the first Frank-Condon step is sharper than the higher order ones,
and its width, when compared to the bare tunneling strength, is reduced by the
overlap between the groundstates of the displaced and the non-displaced
oscillator.Comment: 8 pages, 3 figures. PRB, in pres
Theory of Vibrationally Inelastic Electron Transport through Molecular Bridges
Vibrationally inelastic electron transport through a molecular bridge that is
connected to two leads is investigated. The study is based on a generic model
of vibrational excitation in resonant transmission of electrons through a
molecular junction. Employing methods from electron-molecule scattering theory,
the transmittance through the molecular bridge can be evaluated numerically
exactly. The current through the junction is obtained approximately using a
Landauer-type formula. Considering different parameter regimes, which include
both the case of a molecular bridge that is weakly coupled to the leads,
resulting in narrow resonance structures, and the opposite case of a broad
resonance caused by strong interaction with the leads, we investigate the
characteristic effects of coherent and dissipative vibrational motion on the
electron transport. Furthermore, the validity of widely used approximations
such as the wide-band approximation and the restriction to elastic transport
mechanisms is investigated in some detail.Comment: Submited to PRB, revised version according to comments of referees
(minor text changes and new citations
Conductance Peak Height Correlations for a Coulomb-Blockaded Quantum Dot in a Weak Magnetic Field
We consider statistical correlations between the heights of conductance peaks
corresponding to two different levels in a Coulomb-blockaded quantum dot.
Correlations exist for two peaks at the same magnetic field if the field does
not fully break time-reversal symmetry as well as for peaks at different values
of a magnetic field that fully breaks time-reversal symmetry. Our results are
also relevant to Coulomb-blockade conductance peak height statistics in the
presence of weak spin-orbit coupling in a chaotic quantum dot.Comment: 5 pages, 3 figures, REVTeX 4, accepted for publication in Phys. Rev.
Spin states of the first four holes in a silicon nanowire quantum dot
We report measurements on a silicon nanowire quantum dot with a clarity that
allows for a complete understanding of the spin states of the first four holes.
First, we show control of the hole number down to one. Detailed measurements at
perpendicular magnetic fields reveal the Zeeman splitting of a single hole in
silicon. We are able to determine the ground-state spin configuration for one
to four holes occupying the quantum dot and find a spin filling with
alternating spin-down and spin-up holes, which is confirmed by
magnetospectroscopy up to 9T. Additionally, a so far inexplicable feature in
single-charge quantum dots in many materials systems is analyzed in detail. We
observe excitations of the zero-hole ground-state energy of the quantum dot,
which cannot correspond to electronic or Zeeman states. We show that the most
likely explanation is acoustic phonon emission to a cavity between the two
contacts to the nanowire.Comment: 24 pages, 8 figures, both including supporting informatio
Vibrational Excitations in Weakly Coupled Single-Molecule Junctions: A Computational Analysis
In bulk systems, molecules are routinely identified by their vibrational
spectrum using Raman or infrared spectroscopy. In recent years, vibrational
excitation lines have been observed in low-temperature conductance measurements
on single molecule junctions and they can provide a similar means of
identification. We present a method to efficiently calculate these excitation
lines in weakly coupled, gateable single-molecule junctions, using a
combination of ab initio density functional theory and rate equations. Our
method takes transitions from excited to excited vibrational state into account
by evaluating the Franck-Condon factors for an arbitrary number of vibrational
quanta, and is therefore able to predict qualitatively different behaviour from
calculations limited to transitions from ground state to excited vibrational
state. We find that the vibrational spectrum is sensitive to the molecular
contact geometry and the charge state, and that it is generally necessary to
take more than one vibrational quantum into account. Quantitative comparison to
previously reported measurements on pi-conjugated molecules reveals that our
method is able to characterize the vibrational excitations and can be used to
identify single molecules in a junction. The method is computationally feasible
on commodity hardware.Comment: 9 pages, 7 figure
Wolbachia and DNA barcoding insects: patterns, potential and problems
Wolbachia is a genus of bacterial endosymbionts that impacts the breeding systems of their hosts. Wolbachia can confuse the patterns of mitochondrial variation, including DNA barcodes, because it influences the pathways through which mitochondria are inherited. We examined the extent to which these endosymbionts are detected in routine DNA barcoding, assessed their impact upon the insect sequence divergence and identification accuracy, and considered the variation present in Wolbachia COI. Using both standard PCR assays (Wolbachia surface coding protein – wsp), and bacterial COI fragments we found evidence of Wolbachia in insect total genomic extracts created for DNA barcoding library construction. When >2 million insect COI trace files were examined on the Barcode of Life Datasystem (BOLD) Wolbachia COI was present in 0.16% of the cases. It is possible to generate Wolbachia COI using standard insect primers; however, that amplicon was never confused with the COI of the host. Wolbachia alleles recovered were predominantly Supergroup A and were broadly distributed geographically and phylogenetically. We conclude that the presence of the Wolbachia DNA in total genomic extracts made from insects is unlikely to compromise the accuracy of the DNA barcode library; in fact, the ability to query this DNA library (the database and the extracts) for endosymbionts is one of the ancillary benefits of such a large scale endeavor – for which we provide several examples. It is our conclusion that regular assays for Wolbachia presence and type can, and should, be adopted by large scale insect barcoding initiatives. While COI is one of the five multi-locus sequence typing (MLST) genes used for categorizing Wolbachia, there is limited overlap with the eukaryotic DNA barcode region
Green function techniques in the treatment of quantum transport at the molecular scale
The theoretical investigation of charge (and spin) transport at nanometer
length scales requires the use of advanced and powerful techniques able to deal
with the dynamical properties of the relevant physical systems, to explicitly
include out-of-equilibrium situations typical for electrical/heat transport as
well as to take into account interaction effects in a systematic way.
Equilibrium Green function techniques and their extension to non-equilibrium
situations via the Keldysh formalism build one of the pillars of current
state-of-the-art approaches to quantum transport which have been implemented in
both model Hamiltonian formulations and first-principle methodologies. We offer
a tutorial overview of the applications of Green functions to deal with some
fundamental aspects of charge transport at the nanoscale, mainly focusing on
applications to model Hamiltonian formulations.Comment: Tutorial review, LaTeX, 129 pages, 41 figures, 300 references,
submitted to Springer series "Lecture Notes in Physics
Lysosome-mediated processing of chromatin in senescence
Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C–negative, but strongly γ-H2AX–positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression
- …
