7 research outputs found
A Preliminary Assessment of Rotavirus Vaccine Effectiveness in Zambia
BACKGROUND: Diarrhea is the third leading cause of child death in Zambia. Up to one-third of diarrhea cases resulting in hospitalization and/or death are caused by vaccine-preventable rotavirus. In January 2012, Zambia initiated a pilot introduction of the Rotarix live, oral rotavirus vaccine in all public health facilities in Lusaka Province.
METHODS: Between July 2012 and October 2013, we conducted a case-control study at 6 public sector sites to estimate rotavirus vaccine effectiveness (VE) in age-eligible children presenting with diarrhea. We computed the odds of having received at least 1 dose of Rotarix among children whose stool was positive for rotavirus antigen (cases) and children whose stool was negative (controls). We adjusted the resulting odds ratio (OR) for patient age, calendar month of presentation, and clinical site, and expressed VE as (1 - adjusted OR) × 100.
RESULTS: A total of 91 rotavirus-positive cases and 298 rotavirus-negative controls who had under-5 card-confirmed vaccination status and were ≥6 months of age were included in the case-control analysis. Among rotavirus-positive children who were age-eligible to be vaccinated, 20% were hospitalized. Against rotavirus diarrhea of all severity, the adjusted 2-dose VE was 26% (95% confidence interval [CI], -30% to 58%) among children ≥6 months of age. VE against hospitalized children ≥6 months of age was 56% (95% CI, -34% to 86%).
CONCLUSIONS: We observed a higher point estimate for VE against increased severity of illness compared with milder disease, but were not powered to detect a low level of VE against milder disease
Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection
Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4+ T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12–20 mo, viruses exhibited concentrated mutations at 17–34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses
Genetic identity, biological phenotype, and evolutionary pathways of transmitted/founder viruses in acute and early HIV-1 infection
Identification of full-length transmitted HIV-1 genomes could be instrumental in HIV-1 pathogenesis, microbicide, and vaccine research by enabling the direct analysis of those viruses actually responsible for productive clinical infection. We show in 12 acutely infected subjects (9 clade B and 3 clade C) that complete HIV-1 genomes of transmitted/founder viruses can be inferred by single genome amplification and sequencing of plasma virion RNA. This allowed for the molecular cloning and biological analysis of transmitted/founder viruses and a comprehensive genome-wide assessment of the genetic imprint left on the evolving virus quasispecies by a composite of host selection pressures. Transmitted viruses encoded intact canonical genes (gag-pol-vif-vpr-tat-rev-vpu-env-nef) and replicated efficiently in primary human CD4+ T lymphocytes but much less so in monocyte-derived macrophages. Transmitted viruses were CD4 and CCR5 tropic and demonstrated concealment of coreceptor binding surfaces of the envelope bridging sheet and variable loop 3. 2 mo after infection, transmitted/founder viruses in three subjects were nearly completely replaced by viruses differing at two to five highly selected genomic loci; by 12–20 mo, viruses exhibited concentrated mutations at 17–34 discrete locations. These findings reveal viral properties associated with mucosal HIV-1 transmission and a limited set of rapidly evolving adaptive mutations driven primarily, but not exclusively, by early cytotoxic T cell responses
Deciphering Human Immunodeficiency Virus Type 1 Transmission and Early Envelope Diversification by Single-Genome Amplification and Sequencingâ–¿
Accurate identification of the transmitted virus and sequences evolving from it could be instrumental in elucidating the transmission of human immunodeficiency virus type 1 (HIV-1) and in developing vaccines, drugs, or microbicides to prevent infection. Here we describe an experimental approach to analyze HIV-1 env genes as intact genetic units amplified from plasma virion RNA by single-genome amplification (SGA), followed by direct sequencing of uncloned DNA amplicons. We show that this strategy precludes in vitro artifacts caused by Taq-induced nucleotide substitutions and template switching, provides an accurate representation of the env quasispecies in vivo, and has an overall error rate (including nucleotide misincorporation, insertion, and deletion) of less than 8 × 10−5. Applying this method to the analysis of virus in plasma from 12 Zambian subjects from whom samples were obtained within 3 months of seroconversion, we show that transmitted or early founder viruses can be identified and that molecular pathways and rates of early env diversification can be defined. Specifically, we show that 8 of the 12 subjects were each infected by a single virus, while 4 others acquired more than one virus; that the rate of virus evolution in one subject during an 80-day period spanning seroconversion was 1.7 × 10−5 substitutions per site per day; and that evidence of strong immunologic selection can be seen in Env and overlapping Rev sequences based on nonrandom accumulation of nonsynonymous mutations. We also compared the results of the SGA approach with those of more-conventional bulk PCR amplification methods performed on the same patient samples and found that the latter is associated with excessive rates of Taq-induced recombination, nucleotide misincorporation, template resampling, and cloning bias. These findings indicate that HIV-1 env genes, other viral genes, and even full-length viral genomes responsible for productive clinical infection can be identified by SGA analysis of plasma virus sampled at intervals typical in large-scale vaccine trials and that pathways of viral diversification and immune escape can be determined accurately
Findings from a comprehensive diarrhoea prevention and treatment programme in Lusaka, Zambia
Abstract Background The Programme for the Awareness and Elimination of Diarrhoea (PAED) was a pilot comprehensive diarrhoea prevention and control programme aimed to reduce post-neonatal, all-cause under-five mortality by 15 % in Lusaka Province. Interventions included introduction of the rotavirus vaccine, improved clinical case management of diarrhoea, and a comprehensive community prevention and advocacy campaign on hand washing with soap, exclusive breastfeeding up to 6 months of age, and the use of ORS and Zinc. This study aimed to assess the impact of PAED on under-5 mortality. Methods The study was a pre-post evaluation design. The Demographic and Health Survey style population-based two-stage approach was used to collect data at the beginning of the intervention and 3 years following the start of intervention implementation in Lusaka province. The primary outcome of interest was an all-cause, post-neonatal under-five mortality rate defined as the probability of dying after the 28th day and before the fifth birthday among children aged 1–59 months. The Kaplan-Meier time to event analysis was used to estimate the probability of death; multiplying this probability by 1000 to yield the post-neonatal mortality rate. Survival-time inverse probability weighting model was used to estimate Average Treatment Effect (ATE). Results The percentage of children under age 5 who had diarrhoea in the last 2 weeks preceding the survey declined from 15.8 % (95 % CI: 15.2 %, 16.4 %) in 2012 to 12.7 % (95 % CI: 12.3 %, 13.2 %) in 2015. Over the same period, mortality in post-neonatal children under 5 years of age declined by 34 %, from an estimated rate of 29 deaths per 1000 live births (95 % CI: (26, 32) death per 1000 live births) to 19 deaths per 1000 live births (95 % CI: (16, 21) death per 1000 live births). When every child in the population of children aged 1–59 months is exposed to the intervention, the average time-to-death was estimated to be about 8 months more than when no child is exposed (ATE = 7.9; 95 % CI: 4.4,11.5; P < 0.001). Conclusion Well-packaged diarrhoea preventive and treatment interventions delivered at the clinic and community-level could potentially reduce probability of death among children aged 1–59 months