332 research outputs found

    Space/time noncommutative field theories and causality

    Get PDF
    As argued previously, amplitudes of quantum field theories on noncommutative space and time cannot be computed using naive path integral Feynman rules. One of the proposals is to use the Gell-Mann--Low formula with time-ordering applied before performing the integrations. We point out that the previously given prescription should rather be regarded as an interaction point time-ordering. Causality is explicitly violated inside the region of interaction. It is nevertheless a consistent procedure, which seems to be related to the interaction picture of quantum mechanics. In this framework we compute the one-loop self-energy for a space/time noncommutative \phi^4 theory. Although in all intermediate steps only three-momenta play a role, the final result is manifestly Lorentz covariant and agrees with the naive calculation. Deriving the Feynman rules for general graphs, we show, however, that such a picture holds for tadpole lines only.Comment: 16 pages, LaTeX, uses feynmf macros, one reference added; ooops, version 2 was an older one

    Towards High Precision End-to-End Video Streaming from Drones using Packet Trimming

    Get PDF
    The emergence of a number of network communication facilities such as Network Function Virtualization (NFV), Software Defined Networking (SDN), the Internet of Things (IoT), Unmanned Aerial Vehicles (UAV), and in-network packet processing, holds a potential to meet the low latency, high precision requirements of various future multimedia applications. However, this raises the corresponding issues of how all of these elements can be used together in future networking environments, including newly developed protocols and techniques. This paper describes the architecture of an end-to-end video streaming platform for video surveillance, consisting of a UAV network domain, an edge server implementing in-network packet trimming operations with the use of Big Packet Protocol (BPP), utilization of Scalable Video Coding (SVC) and multiple video clients which connect to a network managed by an SDN controller. A Virtualized Edge Function at the drone edge utilizes SVC and in communication with the Drone Control Unit to manage the transmitted video quality. Experimental results show the potential that future multimedia applications can achieve the required high precision with the use of future network components and the consideration of their interactions

    On renormalizability of the massless Thirring model

    Full text link
    We discuss the renormalizability of the massless Thirring model in terms of the causal fermion Green functions and correlation functions of left-right fermion densities. We obtain the most general expressions for the causal two-point Green function and correlation function of left-right fermion densities with dynamical dimensions of fermion fields, parameterised by two parameters. The region of variation of these parameters is constrained by the positive definiteness of the norms of the wave functions of the states related to components of the fermion vector current. We show that the dynamical dimensions of fermion fields calculated for causal Green functions and correlation functions of left-right fermion densities can be made equal. This implies the renormalizability of the massless Thirring model in the sense that the ultra-violet cut-off dependence, appearing in the causal fermion Green functions and correlation functions of left-right fermion densities, can be removed by renormalization of the wave function of the massless Thirring fermion fields only.Comment: 17 pages, Latex, the contribution of fermions with opposite chirality is added,the parameterisation of fermion determinant by two parameters is confirmed,it is shown that dynamical dimensions of fermion fields calculated from different correlation functions can be made equal.This allows to remove the dependence on the ultra-violet cut-off by the renormalization of the wave function of Thirring fermion fields onl

    Consistent Construction of Perturbation Theory on Noncommutative Spaces

    Full text link
    We examine the effect of non-local deformations on the applicability of interaction point time ordered perturbation theory (IPTOPT) based on the free Hamiltonian of local theories. The usual argument for the case of quantum field theory (QFT) on a noncommutative (NC) space (based on the fact that the introduction of star products in bilinear terms does not alter the action) is not applicable to IPTOPT due to several discrepancies compared to the naive path integral approach when noncommutativity involves time. These discrepancies are explained in detail. Besides scalar models, gauge fields are also studied. For both cases, we discuss the free Hamiltonian with respect to non-local deformations.Comment: 22 pages; major changes in Section 3; minor changes in the Introduction and Conclusio

    Are there Local Minima in the Magnetic Monopole Potential in Compact QED?

    Full text link
    We investigate the influence of the granularity of the lattice on the potential between monopoles. Using the flux definition of monopoles we introduce their centers of mass and are able to realize continuous shifts of the monopole positions. We find periodic deviations from the 1/r1/r-behavior of the monopole-antimonopole potential leading to local extrema. We suppose that these meta-stabilities may influence the order of the phase transition in compact QED.Comment: 11 pages, 5 figure

    Diagenetic history of the rock units of bozkir unit controlled by the triassic rifting, Bozkır-Konya

    Get PDF
    The Bozkir Unit representing the northern edge of the Taurus Belt. It comprises from bottom to top, three distinct structural entities: the Upper Triassic pre-rift (Korualan Group), the Upper Triassic-Upper Cretaceous syn-rift (Huglu Group) and the Jurassic-Cretaceous Boyali Tepe Group as to their structural settings. The Korualan Group is represented by the alternations of carbonate (limestone, dolomitic limestone, dolomite) with radiolarite and chert intercalations and clastic rocks (sandstone, siltstone, mudstone, shale). The Huglu Group is made up of volcanic (basalt, andesite) and pyroclastic (tuffaceous sandstone) rocks including radyolarite, limestone and clastic rock (sandstone, siltstone, shale) intercalations. The Boyali Tepe Group is completely made of carbonate rocks. The carbonate-silisiclastic-volcanogenic rocks of the Bozkir Unit contain carbonate (calcite, dolomite), quartz, feldspar (plagioclase, anortoclase), phyllosilicate (illite, chlorite, mixed-layered illite-chlorite/I-C, chlorite-vermiculite/C-V, chlorite-smectite/C-S, rarely smectite), augite, hematite, analcime and heulandite in order of abundance. On the basis of illite Kübler Index data; Korualan Group and Huglu Group re?ect low grade diagenetic, high grade diagenetic and high grade diagenetic-anchizonal characteristics, respectively. The illite/micas of the pre-rift units and units related to the rifting have muscovitic, and phengitic and seladonitic compositions, respectively. The distributions of chondrite-normalized trace and rare earth element (REE) contents in the illites present similar trends for Korulan ve Huglu groups, but the quantities of these elements slightly increase in the Huglu Group. δ18O-dD isotopic compositions of water forming the illite minerals are different than that of sea water and found to be between Eastern Mediterranean Meteoric Water (EMMW) and magmatic water compositions. It also shows that temperature of the water forming the illite minerals varies from low to high values. The fndings from the rocks of Bozkir Unit suggest that pre-and syn-rift units have different mineralogical-petrographical and geochemical properties. The younger units within the rift due to extension and crustal thinning related to rifting must have exposed in higher diagenetic conditions by more burial and heat with respect to older units at the edges
    corecore