28 research outputs found

    Novel deep learning approach to model and predict the spread of COVID-19

    Get PDF
    SARS-CoV2, which causes coronavirus disease (COVID-19) is continuing to spread globally, producing new variants and has become a pandemic. People have lost their lives not only due to the virus but also because of the lack of counter measures in place. Given the increasing caseload and uncertainty of spread, there is an urgent need to develop robust artificial intelligence techniques to predict the spread of COVID-19. In this paper, we propose a deep learning technique, called Deep Sequential Prediction Model (DSPM) and machine learning based Non-parametric Regression Model (NRM) to predict the spread of COVID-19. Our proposed models are trained and tested on publicly available novel coronavirus dataset. The proposed models are evaluated by using Mean Absolute Error and compared with the existing methods for the prediction of the spread of COVID-19. Our experimental results demonstrate the superior prediction performance of the proposed models. The proposed DSPM and NRM achieve MAEs of 388.43 (error rate 1.6%) and 142.23 (0.6%), respectively compared to 6508.22 (27%) achieved by baseline SVM, 891.13 (9.2%) by Time-Series Model (TSM), 615.25 (7.4%) by LSTM-based Data-Driven Estimation Method (DDEM) and 929.72 (8.1%) by Maximum-Hasting Estimation Method (MHEM)

    The economic burden of asthma and chronic obstructive pulmonary disease and the impact of poor inhalation technique with commonly prescribed dry powder inhalers in three European countries

    Get PDF
    Contains fulltext : 171713.pdf (publisher's version ) (Open Access)BACKGROUND: Asthma and chronic obstructive pulmonary disease (COPD) are common chronic inflammatory respiratory diseases, which impose a substantial burden on healthcare systems and society. Fixed-dose combinations (FDCs) of inhaled corticosteroids (ICS) and long-acting beta2 agonists (LABA), often administered using dry powder inhalers (DPIs), are frequently prescribed to control persistent asthma and COPD. Use of DPIs has been associated with poor inhalation technique, which can lead to increased healthcare resource use and costs. METHODS: A model was developed to estimate the healthcare resource use and costs associated with asthma and COPD management in people using commonly prescribed DPIs (budesonide + formoterol Turbuhaler((R)) or fluticasone + salmeterol Accuhaler((R))) over 1 year in Spain, Sweden and the United Kingdom (UK). The model considered direct costs (inhaler acquisition costs and scheduled and unscheduled healthcare costs), indirect costs (productive days lost), and estimated the contribution of poor inhalation technique to the burden of illness. RESULTS: The direct cost burden of managing asthma and COPD for people using budesonide + formoterol Turbuhaler((R)) or fluticasone + salmeterol Accuhaler((R)) in 2015 was estimated at euro813 million, euro560 million, and euro774 million for Spain, Sweden and the UK, respectively. Poor inhalation technique comprised 2.2-7.7 % of direct costs, totalling euro105 million across the three countries. When lost productivity costs were included, total expenditure increased to euro1.4 billion, euro1.7 billion and euro3.3 billion in Spain, Sweden and the UK, respectively, with euro782 million attributable to poor inhalation technique across the three countries. Sensitivity analyses showed that the model results were most sensitive to changes in the proportion of patients prescribed ICS and LABA FDCs, and least sensitive to differences in the number of antimicrobials and oral corticosteroids prescribed. CONCLUSIONS: The cost of managing asthma and COPD using commonly prescribed DPIs is considerable. A substantial, and avoidable, contributor to this burden is poor inhalation technique. Measures that can improve inhalation technique with current DPIs, such as easier-to-use inhalers or better patient training, could offer benefits to patients and healthcare providers through improving disease outcomes and lowering costs

    Citizen science in schools: Engaging students in research on urban habitat for pollinators

    Full text link
    Citizen science can play an important role in school science education. Citizen science is particularly relevant to addressing current societal environmental sustainability challenges, as it engages the students directly with environmental science and gives students an understanding of the scientific process. In addition, it allows students to observe local representations of global challenges. Here, we report a citizen science programme designed to engage school-age children in real-world scientific research. The programme used standardized methods deployed across multiple schools through scientist–school partnerships to engage students with an important conservation problem: habitat for pollinator insects in urban environments. Citizen science programmes such as the programme presented here can be used to enhance scientific literacy and skills. Provided key challenges to maintain data quality are met, this approach is a powerful way to contribute valuable citizen science data for understudied, but ecologically important study systems, particularly in urban environments across broad geographical areas

    Cloning and expression analysis of Drosophila extracellular Cu Zn superoxide dismutase

    No full text
    Synopsis In the present study, we cloned and sequenced the mRNAs of the Sod3 [extracellular Cu Zn SOD (superoxide dismutase)] gene in Drosophila and identified two mRNA products formed by alternative splicing. These products code for a long and short protein derived from the four transcripts found in global expression studies (Flybase numbers Dmel \ CG9027, FBgn0033631). Both mRNA process variants contain an extracellular signalling sequence, a region of high homology to the Sod1 (cytoplasmic Cu Zn SOD) including a conserved AUG start, with the longer form also containing a hydrophobic tail. The two fully processed transcripts are homologous to Caenorhabditis elegans Sod3 mRNA showing the same processing pattern. Using an established KG p-element + insertion line (KG06029), we demonstrate that the Sod3 codes for an active Cu Zn SOD. We found differing expression patterns across sex with higher levels of expression of Sod3 in females. There is a correlation of Sod1 and Sod3 gene expression and activity that can explain why Sod3 was not seen in earlier studies of Sod1. Finally, we found no effect on lifespan with the Sod3 hypomorph mutation (Sod3 KG06029 ) but did observe a significant increase in resistance to paraquat and H 2 O 2 (hydrogen peroxide)
    corecore