23 research outputs found

    Deafferentiation-associated changes in afferent and efferent processes in the guinea pig cochlea and afferent regeneration with chronic intrascalar brain-derived neurotrophic factor and acidic fibroblast growth factor

    Full text link
    Deafferentation of the auditory nerve from loss of sensory cells is associated with degeneration of nerve fibers and spiral ganglion neurons (SGN). SGN survival following deafferentation can be enhanced by application of neurotrophic factors (NTF), and NTF can induce the regrowth of SGN peripheral processes. Cochlear prostheses could provide targets for regrowth of afferent peripheral processes, enhancing neural integration of the implant, decreasing stimulation thresholds, and increasing specificity of stimulation. The present study analyzed distribution of afferent and efferent nerve fibers following deafness in guinea pigs using specific markers (parvalbumin for afferents, synaptophysin for efferent fibers) and the effect of brain derived neurotrophic factor (BDNF) in combination with acidic fibroblast growth factor (aFGF). Immediate treatment following deafness was compared with 3-week-delayed NTF treatment. Histology of the cochlea with immunohistochemical techniques allowed quantitative analysis of neuron and axonal changes. Effects of NTF were assessed at the light and electron microscopic levels. Chronic BDNF/aFGF resulted in a significantly increased number of afferent peripheral processes in both immediate- and delayed-treatment groups. Outgrowth of afferent nerve fibers into the scala tympani were observed, and SGN densities were found to be higher than in normal hearing animals. These new SGN might have developed from endogenous progenitor/stem cells, recently reported in human and mouse cochlea, under these experimental conditions of deafferentation-induced stress and NTF treatment. NTF treatment provided no enhanced maintenance of efferent fibers, although some synaptophysin-positive fibers were detected at atypical sites, suggesting some sprouting of efferent fibers. J. Comp. Neurol. 507:1602–1621, 2008. © 2008 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/58023/1/21619_ftp.pd

    Cell-specific targeting in the mouse inner ear using nanoparticles conjugated with a neurotrophin-derived peptide ligand: Potential tool for drug delivery

    No full text
    Cell specific targeting is an emerging field in nanomedicine. Homing of the multifunctional nanoparticles (MFNPs) is achieved by the conjugation of targeting moieties on the nanoparticle surface. The inner ear is an attractive target for new drug delivery strategies as it is hard to access and hearing loss is a significant worldwide problem. In this work we investigated the utility of a Nerve Growth Factor-derived peptide (hNgf_EE) functionalized nanoparticles (NPs) to target cells of the inner ear. These functionalized NPs were introduced to organotypic explant cultures of the mouse inner ear and to PC-12 rat pheochromocytoma cells. The NPs did not show any signs of toxicity. Specific targeting and higher binding affinity to spiral ganglion neurons, Schwann cells and nerve fibers of the explant cultures were achieved through ligand mediated multivalent binding to tyrosine kinase receptors and to p75 neurotrophin receptors. Unspecific uptake of NPs was investigated using NPs conjugated with scrambled hNgf_EE peptide. Our results indicate a selective cochlear cell targeting by MFNPs, which may be a potential tool for cell specific drug and gene delivery to the inner ear

    Development of an innovative 3D cell culture system to study tumour--stroma interactions in non-small cell lung cancer cells.

    No full text
    INTRODUCTION: We describe a novel 3D co-culture model using non-small cell lung cancer (NSCLC) cell lines in combination with lung fibroblasts. This model allows the investigation of tumour-stroma interactions and addresses the importance of having a more in vivo like cell culture model. METHODS: Automation-compatible multi-well hanging drop microtiter plates were used for the production of 3D mono- and co-cultures. In these hanging drops the two NSCLC cell lines A549 and Colo699 were cultivated either alone or co-cultured with lung fibroblasts. The viability of tumour spheroids was confirmed after five and ten days by using Annexin V/Propidium Iodide staining for flow-cytometry. Tumour fibroblast spheroid formation was characterized by scanning electron microscope (SEM), semi-thin sections, fluorescence microscope and immunohistochemistry (IHC). In addition to conventional histology, protein expression of E-Cadherin, vimentin, Ki67, fibronectin, cytokeratin 7 and α-smooth muscle actin (α-SMA) was investigated by IHC. RESULTS: Lower viability was observed in A549 monocultures compared to co-cultures, whereas Colo699 monocultures showed better viability compared to co-cultures. Ki67 expression varied significantly between mono- and co-cultures in both tumour cell lines. An increase of vimentin and decreased E-Cadherin expression could be detected during the course of the cultivation suggesting a transition to a more mesenchymal phenotype. Furthermore, the fibroblast cell line showed an expression of α-SMA only in co-culture with the cancer cell line A549, thereby indicating a mesenchymal to mesenchymal shift to an even more myofibroblast phenotype. CONCLUSION: We demonstrate that our method is a promising tool for the generation of tumour spheroid co-cultures. Furthermore, these spheroids allow the investigation of tumour-stroma interactions and a better reflection of in vivo conditions of cancer cells in their microenvironment. Our method holds potential to contribute to the development of anti-cancer agents and support the search for biomarkers

    The cochlea in fetuses with neural tube defects

    No full text
    In this study different malformations of the cochlea could be demonstrated. Nevertheless, we could not delineate a distinct malformation of the inner ear, that can be linked to a neural tube defect. Neural tube defects are a frequent and heterogeneous group of malformations, ranging from the survivable spina bifida to fatal anencephaly. In multiple animal models an involvement of the vestibulocochlear system has been demonstrated. In this article human fetal temporal bones of neural tube defects were analysed in a multimodular work-up. The morphologic study was performed with light microscopy, transmission electron microscopy and synchrotron radiation-based microcomputed tomography. Immunohistochemistry for different neuronal markers such as peripherin, beta-III-tubulin and vimentin helped to evaluate ontogenetic tissue development. Eight fetal temporal bones with neural tube defects and five control temporal bones were included into the morphologic study. The morphologic results of the neural tube defect temporal bones showed six regularly developed cochleas and two with only a single cochlear turn. Three of the neural tube defect temporal bones were further examined with immunohistochemical analysis. No differences in the staining pattern for peripherin, beta-III-tubulin and vimentin were detected

    SV80 microtissue protein expression pattern.

    No full text
    <p>IHC slices of SV80 in monocultures after ten days (Bar in A: 100 μm); SV80 microtissue staining is only shown representatively after ten days because no difference in the staining pattern between five and ten days was detected. Microtissues were completely positive for vimentin and Ki67, whereas no E-Cadherin and α-SMA expression was observed.</p
    corecore