578 research outputs found

    Elliptic flow due to radiation in heavy-ion collisions

    Get PDF
    In this paper we demonstrate that radiation patterns could cause flow-like behaviour without any reference to hydrodynamic description. For that purpose we use a statistical ensemble of radiating dipoles, motivated by the investigation of the equivalent photon yield produced by decelerating charges. For the elliptic asymmetry factor we find a reasonable agreement with experimental data.Comment: 5 pages, 5 figures, v2: discussion on the physical interpretation of the form factor F is adde

    The production of charm mesons from quark matter at CERN SPS and RHIC

    Get PDF
    We study the production of charm mesons and other charm baryons from quark matter at CERN SPS and RHIC energies. Using quark coalescence models as hadronization mechanism, we predict particle ratios, absolute yields and transverse momentum spectra.Comment: 4 pages in Latex, 2 PS figure, to be published in the proceedings of the SQM'2000 Conference, Berkeley, CA, July 20-25, 2000. Submitted to J. Phys.

    Maximum weight cycle packing in directed graphs, with application to kidney exchange programs

    Get PDF
    Centralized matching programs have been established in several countries to organize kidney exchanges between incompatible patient-donor pairs. At the heart of these programs are algorithms to solve kidney exchange problems, which can be modelled as cycle packing problems in a directed graph, involving cycles of length 2, 3, or even longer. Usually, the goal is to maximize the number of transplants, but sometimes the total benefit is maximized by considering the differences between suitable kidneys. These problems correspond to computing cycle packings of maximum size or maximum weight in directed graphs. Here we prove the APX-completeness of the problem of finding a maximum size exchange involving only 2-cycles and 3-cycles. We also present an approximation algorithm and an exact algorithm for the problem of finding a maximum weight exchange involving cycles of bounded length. The exact algorithm has been used to provide optimal solutions to real kidney exchange problems arising from the National Matching Scheme for Paired Donation run by NHS Blood and Transplant, and we describe practical experience based on this collaboration

    Matching Dynamics with Constraints

    Full text link
    We study uncoordinated matching markets with additional local constraints that capture, e.g., restricted information, visibility, or externalities in markets. Each agent is a node in a fixed matching network and strives to be matched to another agent. Each agent has a complete preference list over all other agents it can be matched with. However, depending on the constraints and the current state of the game, not all possible partners are available for matching at all times. For correlated preferences, we propose and study a general class of hedonic coalition formation games that we call coalition formation games with constraints. This class includes and extends many recently studied variants of stable matching, such as locally stable matching, socially stable matching, or friendship matching. Perhaps surprisingly, we show that all these variants are encompassed in a class of "consistent" instances that always allow a polynomial improvement sequence to a stable state. In addition, we show that for consistent instances there always exists a polynomial sequence to every reachable state. Our characterization is tight in the sense that we provide exponential lower bounds when each of the requirements for consistency is violated. We also analyze matching with uncorrelated preferences, where we obtain a larger variety of results. While socially stable matching always allows a polynomial sequence to a stable state, for other classes different additional assumptions are sufficient to guarantee the same results. For the problem of reaching a given stable state, we show NP-hardness in almost all considered classes of matching games.Comment: Conference Version in WINE 201

    Zeroth Law compatibility of non-additive thermodynamics

    Full text link
    Non-extensive thermodynamics was criticized among others by stating that the Zeroth Law cannot be satisfied with non-additive composition rules. In this paper we determine the general functional form of those non-additive composition rules which are compatible with the Zeroth Law of thermodynamics. We find that this general form is additive for the formal logarithms of the original quantities and the familiar relations of thermodynamics apply to these. Our result offers a possible solution to the longstanding problem about equilibrium between extensive and non-extensive systems or systems with different non-extensivity parameters.Comment: 18 pages, 1 figur

    Integer programming methods for special college admissions problems

    Get PDF
    We develop Integer Programming (IP) solutions for some special college admission problems arising from the Hungarian higher education admission scheme. We focus on four special features, namely the solution concept of stable score-limits, the presence of lower and common quotas, and paired applications. We note that each of the latter three special feature makes the college admissions problem NP-hard to solve. Currently, a heuristic based on the Gale-Shapley algorithm is being used in the application. The IP methods that we propose are not only interesting theoretically, but may also serve as an alternative solution concept for this practical application, and also for other ones

    Geometric approach to chaos in the classical dynamics of abelian lattice gauge theory

    Full text link
    A Riemannian geometrization of dynamics is used to study chaoticity in the classical Hamiltonian dynamics of a U(1) lattice gauge theory. This approach allows one to obtain analytical estimates of the largest Lyapunov exponent in terms of time averages of geometric quantities. These estimates are compared with the results of numerical simulations, and turn out to be very close to the values extrapolated for very large lattice sizes even when the geometric quantities are computed using small lattices. The scaling of the Lyapunov exponent with the energy density is found to be well described by a quadratic power law.Comment: REVTeX, 9 pages, 4 PostScript figures include

    Strange hyperon and antihyperon production from quark and string-rope matter

    Get PDF
    Hyperon and antihyperon production is investigated using two microscopical models: {\bf (1)} the fast hadronization of quark matter as given by the ALCOR model; {\bf (2)} string formation and fragmentation as in the HIJING/B model. We calculate the particle numbers and momentum distributions for Pb+Pb collisions at CERN SPS energies in order to compare the two models with each other and with the available experimental data. We show that these two theoretical approaches give similar yields for the hyperons, but strongly differ for antihyperons.Comment: 11 pages, Latex, 3 EPS figures, contribution to the Proceedings of the 4th International Conference on Strangeness in Quark Matter (SQM'98), Padova, Italy, 20-24 July 199
    corecore