485 research outputs found

    The Higgs Boson Mass in Split Supersymmetry at Two-Loops

    Full text link
    The mass of the Higgs boson in the Split Supersymmetric Standard Model is calculated, including all one-loop threshold effects and the renormalization group evolution of the Higgs quartic coupling through two-loops. The two-loop corrections are very small (<<1 GeV), while the one-loop threshold corrections generally push the Higgs mass down several GeV.Comment: 17 pages. 4 figures. Improved discussion and notation. Corrected typos. Added references. Added plots. Main results unchange

    The General Theory of Quantum Field Mixing

    Get PDF
    We present a general theory of mixing for an arbitrary number of fields with integer or half-integer spin. The time dynamics of the interacting fields is solved and the Fock space for interacting fields is explicitly constructed. The unitary inequivalence of the Fock space of base (unmixed) eigenstates and the physical mixed eigenstates is shown by a straightforward algebraic method for any number of flavors in boson or fermion statistics. The oscillation formulas based on the nonperturbative vacuum are derived in a unified general formulation and then applied to both two and three flavor cases. Especially, the mixing of spin-1 (vector) mesons and the CKM mixing phenomena in the Standard Model are discussed emphasizing the nonperturbative vacuum effect in quantum field theory

    Mixing and oscillations of neutral particles in Quantum Field Theory

    Full text link
    We study the mixing of neutral particles in Quantum Field Theory: neutral boson field and Majorana field are treated in the case of mixing among two generations. We derive the orthogonality of flavor and mass representations and show how to consistently calculate oscillation formulas, which agree with previous results for charged fields and exhibit corrections with respect to the usual quantum mechanical expressions.Comment: 8 pages, revised versio

    Quantum Field Theory of Meson Mixing

    Get PDF
    We have developed a quantum field theoretic framework for scalar and pseudoscalar meson mixing and oscillations in time. The unitary inequivalence of the Fock space of base (unmixed) eigenstates and the physical mixed eigenstates is proven and shown to lead to a rich condensate structure. This is exploited to develop formulas for two flavor boson oscillations in systems of arbitrary boson occupation number. The mixing and oscillation can be understood in terms of vacuum condensate which interacts with the bare particles to induce non-trivial effects. We apply these formulas to analyze the mixing of η\eta with ηâ€Č\eta' and comment on the KLKSK_L K_S system. In addition, we consider the mixing of boson coherent states, which may have future applications in the construction of meson lasers.Comment: 12 pages, 3 figures; Eqs.(10-12) corrected, leading to new physical insights; added paragraph under Eq.(24) explaining physical interpretation of mixing in terms of vacuum condensation; references added and minor typo correcte

    Lepton charge and neutrino mixing in pion decay processes

    Full text link
    We consider neutrino mixing and oscillations in quantum field theory and compute the neutrino lepton charge in decay processes where neutrinos are generated. We also discuss the proper definition of flavor charge and states and clarify the issues of the possibility of different mass parameters in field mixing.Comment: 13 page

    Elementary immunology: Na(+) as a regulator of immunity

    Get PDF
    The skin can serve as an interstitial Na(+) reservoir. Local tissue Na(+) accumulation increases with age, inflammation and infection. This increased local Na(+) availability favors pro-inflammatory immune cell function and dampens their anti-inflammatory capacity. In this review, we summarize available data on how NaCl affects various immune cells. We particularly focus on how salt promotes pro-inflammatory macrophage and T cell function and simultaneously curtails their regulatory and anti-inflammatory potential. Overall, these findings demonstrate that local Na(+) availability is a promising novel regulator of immunity. Hence, the modulation of tissue Na(+) levels bears broad therapeutic potential: increasing local Na(+) availability may help in treating infections, while lowering tissue Na(+) levels may be used to treat, for example, autoimmune and cardiovascular diseases

    Pseudoscalar Meson Mixing in Effective Field Theory

    Get PDF
    We show that for any effective field theory of colorless meson fields, the mixing schemes of particle states and decay constants are not only related but also determined exclusively by the kinetic and mass Lagrangian densities. In the general case, these are bilinear in terms of the intrinsic fields and involve non-diagonal kinetic and mass matrices. By applying three consecutive steps this Lagrangian can be reduced into the standard quadratic form in terms of the physical fields. These steps are : (i) the diagonalization of the kinetic matrix, (ii) rescaling of the fields, and (iii) the diagonalization of the mass matrix. In case, where the dimensions of the non-diagonal kinetic and mass sub-matrices are respectively, k×kk\times k and n×nn\times n, this procedure leads to mixing schemes which involve [k(k−1)/2]+[n(n−1)/2][k(k-1)/2] + [n(n-1)/2] angles and kk field rescaling parameters. This observation holds true irrespective with the type of particle interactions presumed. The commonly used mixing schemes, correspond to a proper choice of the kinetic and mass matrices, and are derived as special cases. In particular, η\eta-ηâ€Č\eta ' mixing, requires one angle, if and only if, the kinetic term with the intrinsic fields has a quadratic form.Comment: REVTeX, 6 page

    Neutrino mixing contribution to the cosmological constant

    Full text link
    We show that the non-perturbative vacuum structure associated with neutrino mixing leads to a non-zero contribution to the value of the cosmological constant. Such a contribution comes from the specific nature of the mixing phenomenon. Its origin is completely different from the one of the ordinary contribution of a massive spinor field. We estimate this neutrino mixing contribution by using the natural cut--off appearing in the quantum field theory formalism for neutrino mixing and oscillation.Comment: 7 page
    • 

    corecore