3,430 research outputs found

    Observation of Free-Space Single-Atom Matterwave Interference

    Full text link
    We observe matterwave interference of a single cesium atom in free fall. The interferometer is an absolute sensor of acceleration and we show that this technique is sensitive to forces at the level of 3.2×10−273.2\times10^{-27} N with a spatial resolution at the micron scale. We observe the build up of the interference pattern one atom at a time in an interferometer where the mean path separation extends far beyond the coherence length of the atom. Using the coherence length of the atom wavepacket as a metric, we directly probe the velocity distribution and measure the temperature of a single atom in free fall.Comment: 5 pages, 4 figure

    Automation of NLO QCD and EW corrections with Sherpa and Recola

    Full text link
    This publication presents the combination of the one-loop matrix-element generator Recola with the multipurpose Monte Carlo program Sherpa. Since both programs are highly automated, the resulting Sherpa+Recola framework allows for the computation of -in principle- any Standard Model process at both NLO QCD and EW accuracy. To illustrate this, three representative LHC processes have been computed at NLO QCD and EW: vector-boson production in association with jets, off-shell Z-boson pair production, and the production of a top-quark pair in association with a Higgs boson. In addition to fixed-order computations, when considering QCD corrections, all functionalities of Sherpa, i.e. particle decays, QCD parton showers, hadronisation, underlying events, etc. can be used in combination with Recola. This is demonstrated by the merging and matching of one-loop QCD matrix elements for Drell-Yan production in association with jets to the parton shower. The implementation is fully automatised, thus making it a perfect tool for both experimentalists and theorists who want to use state-of-the-art predictions at NLO accuracy.Comment: 38 pages, 29 figures. Matches the published version (few typos corrected

    Opportunities for farming in alpine countries – pathways to truly grassland-based beef and milk production in Austria and Switzerland

    Get PDF
    Farming in the alpine countries of Austria and Switzerland fulfils important economic, socio-cultural and ecological functions for society. However, even though both Austria and Switzerland have increasingly focused their agricultural policy towards ecology, in both countries negative environmental impacts of agriculture still have to be reduced massively

    Chemical ordering and composition fluctuations at the (001) surface of the Fe-Ni Invar alloy

    Full text link
    We report on a study of (001) oriented fcc Fe-Ni alloy surfaces which combines first-principles calculations and low-temperature STM experiments. Density functional theory calculations show that Fe-Ni alloy surfaces are buckled with the Fe atoms slightly shifted outwards and the Ni atoms inwards. This is consistent with the observation that the atoms in the surface layer can be chemically distinguished in the STM image: brighter spots (corrugation maxima with increased apparent height) indicate iron atoms, darker ones nickel atoms. This chemical contrast reveals a c2x2 chemical order (50% Fe) with frequent Fe-rich defects on Invar alloy surface. The calculations also indicate that subsurface composition fluctuations may additionally modulate the apparent height of the surface atoms. The STM images show that this effect is pronounced compared to the surfaces of other disordered alloys, which suggests that some chemical order and corresponding concentration fluctuations exist also in the subsurface layers of Invar alloy. In addition, detailed electronic structure calculations allow us to identify the nature of a distinct peak below the Fermi level observed in the tunneling spectra. This peak corresponds to a surface resonance band which is particularly pronounced in iron-rich surface regions and provides a second type of chemical contrast with less spatial resolution but one that is essentially independent of the subsurface composition.Comment: 7 pages, 5 figure

    Stability of nuclear and mitochondrial reference genes in selected tissues of the Ambrosia beetle Xylosandrus germanus

    Get PDF
    SIMPLE SUMMARY: The ambrosia beetle Xylosandrus germanus (Blandford) is a destructive wood-boring insect of horticultural tree crops. A fungal mutualist is cultivated within host trees that provides the sole source of nutrition for the larvae and adults of this beetle. Female X. germanus adults use a pouch-like structure (i.e., mycangium) to maintain and transport spores of their fungal mutualist. To facilitate future studies examining gene expression of X. germanus’ mycangium, the identification of stable genes unaffected by experimental treatments is needed to provide a standard reference during gene expression studies. Selected tissue types were dissected from laboratory-reared and field-collected specimens of the ambrosia beetle X. germanus to evaluate the stability of five reference genes, namely, 28S ribosomal RNA (28S rRNA), arginine kinase (AK), carbamoyl-phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase (CAD), mitochondrial cytochrome oxidase 1 (CO1), and elongation factor-1α (EF1α). The reference genes CO1 and AK were identified as primary and secondary reference genes. By contrast, EF1α was considered unsuitable for use as a reference gene during gene expression studies with X. germanus. These results will aid in normalizing the expression of target genes during studies with X. germanus. ABSTRACT: The fungus-farming ambrosia beetle Xylosandrus germanus (Blandford) uses a pouch-like structure (i.e., mycangium) to transport spores of its nutritional fungal mutualist. Our current study sought to identify reference genes necessary for future transcriptome analyses aimed at characterizing gene expression within the mycangium. Complementary DNA was synthesized using selected tissue types from laboratory-reared and field-collected X. germanus consisting of the whole body, head + thorax, deflated or inflated mycangium + scutellum, inflated mycangium, and thorax + abdomen. Quantitative reverse-transcription PCR reactions were performed using primers for 28S ribosomal RNA (28S rRNA), arginine kinase (AK), carbamoyl-phosphate synthetase 2-aspartate transcarbamylase-dihydroorotase (CAD), mitochondrial cytochrome oxidase 1 (CO1), and elongation factor-1α (EF1α). Reference gene stability was analyzed using GeNorm, NormFinder, BestKeeper, ΔCt, and a comprehensive final ranking by RefFinder. The gene CO1 was identified as the primary reference gene since it was generally ranked in first or second position among the tissue types containing the mycangium. Reference gene AK was identified as a secondary reference gene. In contrast, EF1α was generally ranked in the last or penultimate place. Identification of two stable reference genes will aid in normalizing the expression of target genes for subsequent gene expression studies of X. germanus’ mycangium
    • 

    corecore