63 research outputs found

    CHO microRNA engineering is growing up : recent successes and future challenges

    Get PDF
    microRNAs with their ability to regulate complex pathways that control cellular behavior and phenotype have been proposed as potential targets for cell engineering in the context of optimization of biopharmaceutical production cell lines, specifically of Chinese Hamster Ovary cells. However, until recently, research was limited by a lack of genomic sequence information on this industrially important cell line. With the publication of the genomic sequence and other relevant data sets for CHO cells since 2011, the doors have been opened for an improved understanding of CHO cell physiology and for the development of the necessary tools for novel engineering strategies. In the present review we discuss both knowledge on the regulatory mechanisms of microRNAs obtained from other biological models and proof of concepts already performed on CHO cells, thus providing an outlook of potential applications of microRNA engineering in production cell lines

    Characterizing the effect of glutamine supplementation on asparagine and glutamine metabolism using 13C metabolic flux analysis

    Get PDF
    Upstream development efforts often focus on improved productivity. Among those efforts, improvements in medium formulations have translated into greater titers. To continue this historical trend, a better understanding of the cell metabolism is warranted for guiding efficient utilization of medium components to improve titer while minimizing byproducts. 13C Metabolic Flux Analysis (13C MFA) offers opportunities to study metabolic phenotypes by applying isotope tracers to estimate the intracellular fluxes through metabolic pathways. In this work, 13C MFA was applied to study the effects of glutamine supplementation by 13C parallel labelling of cultures with [U-13C]asparagine, [U-13C]glutamine and an a mixture of [U-13C]glucose with [1,2-13C]glucose. The study was focused on two metabolic states characterized by glutamine consumption in the early exponential phase and glutamine production in the late exponential phase of a fed-batch culture. To quantify individual metabolic pathway activity, metabolic flux maps were generated for the glutamine supplemented feeds compared to a control case with glutamine in the initial medium. The glutamine supplementation condition resulted in redistribution of the fluxes in the TCA cycle. Furthermore, measurements of the enrichment of cell protein indicate different allocations of the fed nutrients into generated biomass for the glutamine supplemented condition. Comparison between the early and the late exponential phases provided novel insights on how glutamine modulates CHO central carbon metabolism and supports the important role of glutamine as a major source of energy for cell proliferation. These findings contribute towards an improved characterization of the metabolism of industrial cells with useful implications for optimizing medium and feed development

    Three doses of COVID-19 mRNA vaccine induce class-switched antibody responses in inflammatory arthritis patients on immunomodulatory therapies

    Get PDF
    Patients with inflammatory arthritis (IA) are at increased risk of severe COVID-19 due to medication-induced immunosuppression that impairs host defenses. The aim of this study was to assess antibody and B cell responses to COVID-19 mRNA vaccination in IA patients receiving immunomodulatory therapies. Adults with IA were enrolled through the Johns Hopkins Arthritis Center and compared with healthy controls (HC). Paired plasma and peripheral blood mononuclear cell (PBMC) samples were collected prior to and 30 days or 6 months following the first two doses of mRNA vaccines (D2; HC=77 and IA=31 patients), or 30 days following a third dose of mRNA vaccines (D3; HC=11 and IA=96 patients). Neutralizing antibody titers, total binding antibody titers, and B cell responses to vaccine and Omicron variants were analyzed. Anti-Spike (S) IgG and S-specific B cells developed appropriately in most IA patients following D3, with reduced responses to Omicron variants, and negligible effects of medication type or drug withholding. Neutralizing antibody responses were lower compared to healthy controls after both D2 and D3, with a small number of individuals demonstrating persistently undetectable neutralizing antibody levels. Most IA patients respond as well to mRNA COVID-19 vaccines as immunocompetent individuals by the third dose, with no evidence of improved responses following medication withholding. These data suggest that IA-associated immune impairment may not hinder immunity to COVID-19 mRNA vaccines in most individuals

    Regulating apoptosis in mammalian cell cultures

    Full text link
    Graphs capture the essential elements of many problems broadly defined as searching or categorizing. With the rapid increase of data volumes from sensors, many application disciplines need to process larger graphs quickly. This paper presents the results of parallelizing with OpenMP an algorithm that finds, in a single large labeled undirected sparse graph, the connected subgraphs with a given minimum number of edge-disjoint embeddings. Parallelism is exploited at two levels in the algorithm. The lack of a priori knowledge of the extent of parallelism for a given input required use of a dynamic, multi-level approach based on the proposed OpenMP taskq/task extensions. The parallel implementation required the addition of 21 directives and about 50 accompanying lines of code, in an original code of about 15,000 lines. Experimental results show excellent speed-up to 30 processors for the graphs used, with a best speed-up of 26.1 compared to the serial version. The taskq/task constructs show promise for problems exhibiting unstructured parallelism

    \u3ci\u3eN\u3c/i\u3e-glycan structures of human transferrin produced by Lymantria dispar (gypsy moth) cells using the LdMNPV expression system

    Get PDF
    N-glycan structures of recombinant human serum transferrin (hTf) expressed by Lymantria dispar (gypsy moth) 652Y cells were determined. The gene encoding hTf was incorporated into a Lymantria dispar nucleopolyhedrovirus (LdMNPV) under the control of the polyhedrin promoter. This virus was then used to infect Ld652Y cells, and the recombinant protein was harvested at 120 h postinfection. N-glycans were released from the purified recombinant human serum transferrin and derivatized with 2-aminopyridine; the glycan structures were analyzed by a two-dimensional HPLC and MALDI-TOF MS. Structures of 11 glycans (88.8% of total N-glycans) were elucidated. The glycan analysis revealed that the most abundant glycans were Man1Ā±3(Ā± FucĪ±6)GlcNAc2 (75.5%) and GlcNAcMan3(Ā±FucĪ±6)GlcNAc2 (7.4%). There was only ~6% of high-mannose type glycans identified. Nearly half (49.8%) of the total N-glycans contained Ī±(1,6)-fucosy- lation on the Asn-linked GlcNAc residue. However Ī±(1,3)- fucosylation on the same GlcNAc, often found in N-glycans produced by other insects and insect cells, was not detected. Inclusion of fetal bovine serum in culture media had little effect on the N-glycan structures of the recombinant human serum transferrin obtained
    • ā€¦
    corecore