33 research outputs found

    Melt Migration and Chemical Differentiation by Reactive Porosity Waves

    Get PDF
    Melt transport across the ductile mantle is essential for oceanic crust formation or intraplate volcanism. However, mechanisms of melt migration and associated chemical interaction between melt and solid mantle remain unclear. Here, we present a thermo-hydro-mechanical-chemical (THMC) model for melt migration coupled to chemical differentiation. We consider melt migration by porosity waves and a chemical system of forsterite-fayalite-silica. We solve the one-dimensional (1D) THMC model numerically using the finite difference method. Variables, such as solid and melt densities or MgO and SiO2 mass concentrations, are functions of pressure (P), temperature (T), and total silica mass fraction (urn:x-wiley:15252027:media:ggge22741:ggge22741-math-0001). These variables are pre-computed with Gibbs energy minimization and their variations with evolving P, T, and urn:x-wiley:15252027:media:ggge22741:ggge22741-math-0002 are implemented in the THMC model. We consider P and T conditions relevant around the lithosphere-asthenosphere boundary. Systematic 1D simulations quantify the impact of initial distributions of porosity and urn:x-wiley:15252027:media:ggge22741:ggge22741-math-0003 on the melt velocity. Larger perturbations of urn:x-wiley:15252027:media:ggge22741:ggge22741-math-0004 cause larger melt velocities. An adiabatic or conductive geotherm cause fundamentally different vertical variations of densities and concentrations, and an adiabatic geotherm generates higher melt velocities. We quantify differences between melt transport (considering incompatible tracers), major element transport and porosity evolution. Melt transport is significant in the models. We also quantify the relative importance of four porosity variation mechanisms: (a) mechanical compaction and decompaction, (b) density variation, (c) compositional variation, and (d) solid-melt mass exchange. In the models, (de)compaction dominates the porosity variation. We further discuss preliminary results of 2D THMC simulations showing blob-like and channel-like porosity waves

    Beneficial insects in agricultural landscapes: faunal, ecological and functional contributions of recent studies in the canton of Geneva (Switzerland)

    Get PDF
    Description of the subject. In the context of biodiversity maintenance in agricultural environments and of risk reduction related to the use of phytosanitary products, it seems essential to improve our knowledge of the beneficial insects that develop in these ecosystems.Objectives. This article reviews the state of knowledge regarding insect auxiliaries and highlights the main faunal, ecological and functional contributions from recent studies carried out in an agricultural context in Geneva.Method. Data were collected from 2014 to 2019 on several families of predatory and pollinating auxiliaries in various agricultural contexts (extensive grasslands, vineyards, orchards, rapeseed crops, vegetable crops) using Barber, Malaise and emergence traps.Results. 48,921 individual records were collected belonging to 477 species of the main families of auxiliaries. Of these, four species were observed for the first time in Switzerland and 50 in the canton of Geneva. 357 (+/- 75%) of the species had a predatory stage and 103 (+/- 22%) could be regarded as valuable crop auxiliaries. The use of emergence traps made it possible to attest that at least a third of the species, including some rare or threatened species, are able to successfully carry out their life cycles within agricultural environments or to use them as overwintering sites.Conclusions. This review increases our understanding of the composition of the biodiversity of agricultural environments, which constitutes a significant component of biodiversity in Switzerland and in neighboring countries. It also highlights the role of semi-natural habitats as extensive grasslands or inter-rows of vineyards in supporting the development of many rare and sometimes threatened species

    A leucine aminopeptidase is involved in kinetoplast DNA segregation in <i>Trypanosoma brucei</i>

    Get PDF
    The kinetoplast (k), the uniquely packaged mitochondrial DNA of trypanosomatid protists is formed by a catenated network of minicircles and maxicircles that divide and segregate once each cell cycle. Although many proteins involved in kDNA replication and segregation are now known, several key steps in the replication mechanism remain uncharacterized at the molecular level, one of which is the nabelschnur or umbilicus, a prominent structure which in the mammalian parasite Trypanosoma brucei connects the daughter kDNA networks prior to their segregation. Here we characterize an M17 family leucyl aminopeptidase metalloprotease, termed TbLAP1, which specifically localizes to the kDNA disk and the nabelschur and represents the first described protein found in this structure. We show that TbLAP1 is required for correct segregation of kDNA, with knockdown resulting in delayed cytokinesis and ectopic expression leading to kDNA loss and decreased cell proliferation. We propose that TbLAP1 is required for efficient kDNA division and specifically participates in the separation of daughter kDNA networks

    Functional Characterisation and Drug Target Validation of a Mitotic Kinesin-13 in Trypanosoma brucei

    Get PDF
    Mitotic kinesins are essential for faithful chromosome segregation and cell proliferation. Therefore, in humans, kinesin motor proteins have been identified as anti-cancer drug targets and small molecule inhibitors are now tested in clinical studies. Phylogenetic analyses have assigned five of the approximately fifty kinesin motor proteins coded by Trypanosoma brucei genome to the Kinesin-13 family. Kinesins of this family have unusual biochemical properties because they do not transport cargo along microtubules but are able to depolymerise microtubules at their ends, therefore contributing to the regulation of microtubule length. In other eukaryotic genomes sequenced to date, only between one and three Kinesin-13s are present. We have used immunolocalisation, RNAi-mediated protein depletion, biochemical in vitro assays and a mouse model of infection to study the single mitotic Kinesin-13 in T. brucei. Subcellular localisation of all five T. brucei Kinesin-13s revealed distinct distributions, indicating that the expansion of this kinesin family in kinetoplastids is accompanied by functional diversification. Only a single kinesin (TbKif13-1) has a nuclear localisation. Using active, recombinant TbKif13-1 in in vitro assays we experimentally confirm the depolymerising properties of this kinesin. We analyse the biological function of TbKif13-1 by RNAi-mediated protein depletion and show its central role in regulating spindle assembly during mitosis. Absence of the protein leads to abnormally long and bent mitotic spindles, causing chromosome mis-segregation and cell death. RNAi-depletion in a mouse model of infection completely prevents infection with the parasite. Given its essential role in mitosis, proliferation and survival of the parasite and the availability of a simple in vitro activity assay, TbKif13-1 has been identified as an excellent potential drug target

    The Expanded Kinesin-13 Repertoire of Trypanosomes Contains Only One Mitotic Kinesin Indicating Multiple Extra-Nuclear Roles

    Get PDF
    BACKGROUND: Kinesin-13 proteins have a critical role in animal cell mitosis, during which they regulate spindle microtubule dynamics through their depolymerisation activity. Much of what is known about Kinesin-13 function emanates from a relatively small sub-family of proteins containing MCAK and Kif2A/B. However, recent work on kinesins from the much more widely distributed, ancestral Kinesin-13 family, which includes human Kif24, have identified a second function in flagellum length regulation that may exist either alongside or instead of the mitotic role. METHODOLOGY/PRINCIPAL FINDINGS: The African trypanosome Trypanosoma brucei encodes 7 distinct Kinesin-13 proteins, allowing scope for extensive specialisation of roles. Here, we show that of all the trypanosomal Kinesin-13 proteins, only one is nuclear. This protein, TbKIN13-1, is present in the nucleoplasm throughout the cell cycle, but associates with the spindle during mitosis, which in trypanosomes is closed. TbKIN13-1 is necessary for the segregation of both large and mini-chromosomes in this organism and reduction in TbKIN13-1 levels mediated by RNA interference causes deflects in spindle disassembly with spindle-like structures persisting in non-mitotic cells. A second Kinesin-13 is localised to the flagellum tip, but the majority of the Kinesin-13 family members are in neither of these cellular locations. CONCLUSIONS/SIGNIFICANCE: These data show that the expanded Kinesin-13 repertoire of trypanosomes is not associated with diversification of spindle-associated roles. TbKIN13-1 is required for correct spindle function, but the extra-nuclear localisation of the remaining paralogues suggests that the biological roles of the Kinesin-13 family is wider than previously thought

    Gene Discovery in the Threatened Elkhorn Coral: 454 Sequencing of the Acropora palmata Transcriptome

    Get PDF
    BACKGROUND: Cnidarians, including corals and anemones, offer unique insights into metazoan evolution because they harbor genetic similarities with vertebrates beyond that found in model invertebrates and retain genes known only from non-metazoans. Cataloging genes expressed in Acropora palmata, a foundation-species of reefs in the Caribbean and western Atlantic, will advance our understanding of the genetic basis of ecologically important traits in corals and comes at a time when sequencing efforts in other cnidarians allow for multi-species comparisons. RESULTS: A cDNA library from a sample enriched for symbiont free larval tissue was sequenced on the 454 GS-FLX platform. Over 960,000 reads were obtained and assembled into 42,630 contigs. Annotation data was acquired for 57% of the assembled sequences. Analysis of the assembled sequences indicated that 83-100% of all A. palmata transcripts were tagged, and provided a rough estimate of the total number genes expressed in our samples (~18,000-20,000). The coral annotation data contained many of the same molecular components as in the Bilateria, particularly in pathways associated with oxidative stress and DNA damage repair, and provided evidence that homologs of p53, a key player in DNA repair pathways, has experienced selection along the branch separating Cnidaria and Bilateria. Transcriptome wide screens of paralog groups and transition/transversion ratios highlighted genes including: green fluorescent proteins, carbonic anhydrase, and oxidative stress proteins; and functional groups involved in protein and nucleic acid metabolism, and the formation of structural molecules. These results provide a starting point for study of adaptive evolution in corals. CONCLUSIONS: Currently available transcriptome data now make comparative studies of the mechanisms underlying coral's evolutionary success possible. Here we identified candidate genes that enable corals to maintain genomic integrity despite considerable exposure to genotoxic stress over long life spans, and showed conservation of important physiological pathways between corals and bilaterians

    Stress and deformation mechanisms at a subduction zone: insights from 2-D thermomechanical numerical modelling

    Get PDF
    International audienceNumerous processes such as metamorphic reactions, fluid and melt transfer and earthquakes occur at a subducting zone, but are still incompletely understood. These processes are affected, or even controlled, by the magnitude and distribution of stress and deformation mechanism. To eventually understand subduction zone processes, we quantify here stresses and deformation mechanisms in and around a subducting lithosphere, surrounded by asthenosphere and overlain by an overriding plate. We use 2-D thermomechanical numerical simulations based on the finite difference and marker-in-cell method and consider a 3200 km wide and 660 km deep numerical domain with a resolution of 1 km by 1 km. We apply a combined visco-elasto-plastic deformation behaviour using a linear combination of diffusion creep, dislocation creep and Peierls creep for the viscous deformation. We consider two end-member subduction scenarios: forced and free subduction. In the forced scenario, horizontal velocities are applied to the lateral boundaries of the plates during the entire simulation. In the free scenario, we set the horizontal boundary velocities to zero once the subducted slab is long enough to generate a slab pull force large enough to maintain subduction without horizontal boundary velocities. A slab pull of at least 1.8 TN m(-1) is required to continue subduction in the free scenario. We also quantify along-profile variations of gravitational potential energy (GPE). We evaluate the contributions of topography and density variations to GPE variations across a subduction system. The GPE variations indicate large-scale horizontal compressive forces around the trench region and extension forces on both sides of the trench region. Corresponding vertically averaged differential stresses are between 120 and 170 MPa. Furthermore, we calculate the distribution of the dominant deformation mechanisms. Elastoplastic deformation is the dominant mechanism in the upper region of the lithosphere and subducting slab (from ca. 5 to 60 km depth from the top of the slab). Viscous deformation dominates in the lower region of the lithosphere and in the asthenosphere. Considering elasticity in the calculations has an important impact on the magnitude and distribution of deviatoric stress; hence, simulations with increased shear modulus, in order to reduce elasticity, exhibit considerably different stress fields. Limiting absolute stress magnitudes by decreasing the internal friction angle causes slab detachment so that slab pull cannot be transmitted anymore to the horizontal lithosphere. Applying different boundary conditions shows that forced subduction simulations are stronger affected by the applied boundary conditions than free subduction simulations. We also compare our modelled topography and gravity anomaly with natural data of seafloor bathymetry and free-air gravity anomalies across the Mariana trench. Elasticity and deviatoric stress magnitudes of several hundreds of MPa are required to best fit the natural data. This agreement suggests that the modelled flexural behaviour and density field are compatible with natural data. Moreover, we discuss potential applications of our results to the depth of faulting in a subducting plate and to the generation of petit-spot volcanoes

    Climate change, global warming and coral reefs: modelling the effects of temperature

    No full text
    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs
    corecore