118 research outputs found

    Study of detonation interactions inside a 2-D ejector using detonation transmission tubing

    Get PDF

    Suspended liquid particle disturbance on laser-induced blast wave and low density distribution

    Get PDF
    The impurity effect of suspended liquid particles on the laser-induced gas breakdown was experimentally investigated in quiescent gas. The focus of this study is the investigation of the influence of the impurities on the shock wave structure as well as the low density distribution. A 532 nm Nd:YAG laser beam with an 188 mJ/pulse was focused on the chamber filled with suspended liquid particles 0.9 ± 0.63 μm in diameter. Several shock waves are generated by multiple gas breakdowns along the beam path in the breakdown with particles. Four types of shock wave structures can be observed: (1) the dual blast waves with a similar shock radius, (2) the dual blast waves with a large shock radius at the lower breakdown, (3) the dual blast waves with a large shock radius at the upper breakdown, and (4) the triple blast waves. The independent blast waves interact with each other and enhance the shock strength behind the shock front in the lateral direction. The triple blast waves lead to the strongest shock wave in all cases. The shock wave front that propagates toward the opposite laser focal spot impinges on one another, and thereafter a transmitted shock wave (TSW) appears. The TSW interacts with the low density core called a kernel; the kernel then longitudinally expands quickly due to a Richtmyer-Meshkov-like instability. The laser-particle interaction causes an increase in the kernel volume which is approximately five times as large as that in the gas breakdown without particles. In addition, the laser-particle interaction can improve the laser energy efficiency

    Global visualization and quantification of compressible vortex loops

    Get PDF
    The physics of compressible vortex loops generated due to the rolling up of the shear layer upon the diffraction of a shock wave from a shock tube is far from being understood, especially when shock-vortex interactions are involved. This is mainly due to the lack of global quantitative data available which characterizes the flow. The present study involves the usage of the PIV technique to characterize the velocity and vorticity of compressible vortex loops formed at incident shock Mach numbers ofM=1.54 and1.66. Another perk of the PIV technique over purely qualitative methods, which has been demonstrated in the current study, is that at the same time the results also provide a clear image of the various flow features. Techniques such as schlieren and shadowgraph rely on density gradients present in the flow and fail to capture regions of the flow influenced by the primary flow structure which would have relatively lower pressure and density. Various vortex loops, namely, square, elliptic and circular, were generated using different shape adaptors fitted to the end of the shock tube. The formation of a coaxial vortex loop with opposite circulation along with the generation of a third stronger vortex loop ahead of the primary with same circulation direction are of the interesting findings of the current study

    The effects of bracing on sagittal spinopelvic parameters and Cobb angle in adolescents with idiopathic scoliosis: A before-after clinical study

    Get PDF
    Objectives: This study aims to evaluate the effects of bracing on the Cobb angle and sagittal spinopelvic parameters in adolescent idiopathic scoliosis (AIS) patients. Patients and methods: A total of 25 adolescents (2 males, 23 females; mean age 12.7±1.6; range, 10-15 years) with AIS who received bracing between January 2000 and June 2017 were retrospectively analyzed. The initial and final out-of-brace radiographs of 25 AIS patients were analyzed with regard to the spinopelvic parameters. The pelvic incidence (PI), pelvic tilt (PT), sacral slope (SS), Cobb angle, thoracic kyphosis (TK), and lumbar lordosis (LL) were measured. Results: The mean age at the initiation of bracing was 12.7±1.6 years. The mean initial Cobb angle was 31.8°±5.9°. There were no statistically significant differences between the baseline and the final measurements of the PI, PT, and SS. However, there were statistically significant differences between the baseline and the final measurements of the TK, LL, and Cobb angle. A significant correlation was observed between the PI and Cobb angle and TK and between the LL and SS. Conclusion: Our study results show significant associations between the sagittal pelvic parameters and the spinal parameters during the brace treatment of adolescents with idiopathic scoliosis. © 2020 All right reserved by the Turkish Society of Physical Medicine and Rehabilitation This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes (http://creativecommons.org/licenses/by-nc/4.0/)

    Effect of dimples on glancing shock wave turbulent boundary layer interactions

    Get PDF
    An experimental study has been conducted to examine the control effectiveness of dimples on the glancing shock wave turbulent boundary layer interaction produced by a series of hemi-cylindrically blunted fins at Mach numbers 0.8 and 1.4, and at angles of sweep 0°, 15°, 30° and 45°. Schlieren photography, oil flow, pressure sensitive paints, and pressure tappings were employed to examine the characteristics of the induced flow field. The passive control technique used a series of 2 mm diameter, 1 mm deep indents drilled across the hemi-cylindrical leading edge at angles 0°, 45° and 90°. The effects of dimples were highly dependent on their orientation relative to the leading edge apex, and the local boundary layer properties

    Reliability of real�time ultrasound imaging for the assessment of trunk stabilizer muscles: A systematic review of the literature

    Get PDF
    Rehabilitative ultrasound (US) imaging is one of the popular methods for investigating muscle morphologic characteristics and dimensions in recent years. The reliability of this method has been investigated in different studies. As studies have been performed with different designs and quality, reported values of rehabilitative US have a wide range. The objective of this study was to systematically review the literature conducted on the reliability of rehabilitative US imaging for the assessment of deep abdominal and lumbar trunk muscle dimensions. The PubMed/MEDLINE, Scopus, Google Scholar, Science Direct, Embase, Physiotherapy Evidence, Ovid, and CINAHL databases were searched to identify original research articles conducted on the reliability of rehabilitative US imaging published from June 2007 to August 2017. The articles were qualitatively assessed; reliability data were extracted; and the methodological quality was evaluated by 2 independent reviewers. Of the 26 included studies, 16 were considered of high methodological quality. Except for 2 studies, all high�quality studies reported intraclass correlation coefficients (ICCs) for intra�rater reliability of 0.70 or greater. Also, ICCs reported for inter�rater reliability in high�quality studies were generally greater than 0.70. Among low�quality studies, reported ICCs ranged from 0.26 to 0.99 and 0.68 to 0.97 for intra� and inter�rater reliability, respectively. Also, the reported standard error of measurement and minimal detectable change for rehabilitative US were generally in an acceptable range. Generally, the results of the reviewed studies indicate that rehabilitative US imaging has good levels of both inter� and intra�rater reliability. © 2018 by the American Institute of Ultrasound in Medicine

    Influence of shock wave propagation on dielectric barrier discharge plasma actuator performance

    Get PDF
    Interest in plasma actuators as active flow control devices is growing rapidly due to their lack of mechanical parts, light weight and high response frequency. Although the flow induced by these actuators has received much attention, the effect that the external flow has on the performance of the actuator itself must also be considered, especially the influence of unsteady high-speed flows which are fast becoming a norm in the operating flight envelopes. The primary objective of this study is to examine the characteristics of a dielectric barrier discharge (DBD) plasma actuator when exposed to an unsteady flow generated by a shock tube. This type of flow, which is often used in different studies, contains a range of flow regimes from sudden pressure and density changes to relatively uniform high-speed flow regions. A small circular shock tube is employed along with the schlieren photography technique to visualize the flow. The voltage and current traces of the plasma actuator are monitored throughout, and using the well-established shock tube theory the change in the actuator characteristics are related to the physical processes which occur inside the shock tube. The results show that not only is the shear layer outside of the shock tube affected by the plasma but the passage of the shock front and high-speed flow behind it also greatly influences the properties of the plasma
    corecore