219 research outputs found

    Echocardiographic Evaluation of Pulmonary Pressures and Right Ventricular Function after Pediatric Cardiac Surgery: A Simple Approach for the Intensivist.

    Get PDF
    Pulmonary hypertension (PH) is diagnosed using cardiac catheterization and is defined as an elevation of mean pulmonary artery pressure (PAP) greater than 25 mmHg. Although invasive hemodynamics remains the gold standard and is mandatory for disease confirmation, transthoracic echocardiography (TTE) is an extremely useful non-invasive and widely available tool that allows for screening and follow-up, in particular, in the acute setting. TTE may be a valuable alternative, allowing for direct measurement and/or indirect assessment of PAP. Because of the complex geometric shape and pattern of contraction of the right ventricle (RV), as well as the inherent complexity of cardiac repair, no single view or measurement can provide definite information on RV function and PAP and/or pulmonary vascular resistance. In addition, specific training and expertise may be necessary to obtain the views and measurements required. Some simple measurements may be of help when rapid evaluation is mandatory and potentially life saving: the assessment of tricuspid and/or pulmonary valve regurgitant jet and the use of the Bernoulli equation allow for measurement of PAP. Measurements such as the analysis of the pulmonary Doppler wave flow, the septal curvature, or the eccentricity index, assessing ventricular interdependence, are useful for indirect assessment. A four-chamber view of the RV gives information on its size, hypertrophy, function (fractional area change), and tricuspid annular plane systolic excursion as an evaluation of the longitudinal function. Based on these simple measurements, TTE can provide detection of PH, measurement or estimation of PAP, and assessment of cardiac function. TTE is also of importance in follow up of PH as well as providing an assessment of therapeutic strategies in the postoperative setting of cardiac surgery. However, PAP may be misleading as it is dependent on cardiac output and requires accurate measurements. In the presence of residual lesions, analyses of some Doppler measurements may be misleading and not reflect real PAP. Should the TTE evaluation reveal non-conclusive, invasive hemodynamics remains the gold standard

    Pediatric Population Pharmacokinetic Modeling and Exposure-Response Analysis of Ambrisentan in Pulmonary Arterial Hypertension and Comparison With Adult Data.

    Get PDF
    This study aimed to develop a population pharmacokinetic (PK) model of ambrisentan in pediatric patients (8 to <18 years) with pulmonary arterial hypertension (PAH) and compare pediatric ambrisentan systemic exposure with previously reported adult data. Association of ambrisentan exposure with efficacy (6-minute walking distance) and safety (adverse events) were exploratory analyses. A population PK model was developed using pediatric PK data. Steady-state systemic exposure metrics were estimated for the pediatric population and compared with previously reported data in adult patients with PAH and healthy subjects. No covariates had a significant effect on PK parameters; therefore, the final covariate model was the same as the base model. The pediatric population PK model was a 2-compartment model including the effect of body weight (allometric scaling), first-order absorption and elimination, and absorption lag time. Steady-state ambrisentan exposure was similar between the pediatric and adult population when accounting for body weight differences. Geometric mean area under the concentration-time curve at steady state in pediatric patients receiving ambrisentan low dose was 3% lower than in the adult population (and similar in both populations receiving high dose). Geometric mean maximum plasma concentration at steady state in pediatric patients receiving low and high doses was 11% and 18% higher, respectively, than in the adult population. There was no apparent association in the pediatric or adult population between ambrisentan exposure and change in 6-minute walking distance or incidence of ambrisentan-related adverse events in pediatric patients. The similar ambrisentan exposure and exposure-response profiles observed in pediatric and adult populations with PAH suggests appropriateness of body-weight-based dosing in the pediatric population with PAH

    Effects of PDE-5 Inhibition on the Cardiopulmonary System After 2 or 4 Weeks of Chronic Hypoxia.

    Get PDF
    In pulmonary hypertension (PH), hypoxia represents both an outcome and a cause of exacerbation. We addressed the question whether hypoxia adaptation might affect the mechanisms underlying PH alleviation through phosphodiesterase-5 (PDE5) inhibition. Eight-week-old male Sprague-Dawley rats were divided into two groups depending on treatment (placebo or sildenafil, a drug inhibiting PDE5) and were exposed to hypoxia (10% O <sub>2</sub> ) for 0 (t0, n = 9/10), 2 (t2, n = 5/5) or 4 (t4, n = 5/5) weeks. The rats were treated (0.3 mL i.p.) with either saline or sildenafil (1.4 mg/Kg per day). Two-week hypoxia changed the body weight (- 31% vs. - 27%, respectively, P = NS), blood hemoglobin (+ 25% vs. + 27%, P = NS) and nitrates+nitrites (+ 175% vs. + 261%, P = 0.007), right ventricle fibrosis (+ 814% vs. + 317%, P < 0.0001), right ventricle hypertrophy (+ 84% vs. + 49%, P = 0.007) and systolic pressure (+ 108% vs. + 41%, P = 0.001), pulmonary vessel density (+ 61% vs. + 46%, P = NS), and the frequency of small (< 50 µm wall thickness) vessels (+ 35% vs. + 13%, P = 0.0001). Most of these changes were maintained for 4-week hypoxia, except blood hemoglobin and right ventricle hypertrophy that continued increasing (+ 52% vs. + 42%, P = NS; and + 104% vs. + 83%, P = 0.04). To further assess these observations, small vessel frequency was found to be linearly related with the right ventricle-developed pressure independent of hypoxia duration. Thus, although hypoxia adaptation is not yet accomplished after 4 weeks, PH alleviation by PDE5 inhibition might nevertheless provide an efficient strategy for the management of this disease

    Adapting the "Chester step test" to predict peak oxygen uptake in children.

    Get PDF
    Maximal exercise testing may be difficult to perform in clinical practice, especially in obese children who have low cardiorespiratory fitness and exercise tolerance. We aimed to elaborate a model predicting peak oxygen consumption (VO2) in lean and obese children with use of the submaximal Chester step test. We performed a maximal step test, which consisted of 2-minute stages with increasing intensity to exhaustion, in 169 lean and obese children (age range: 7-16 years). VO2 was measured with indirect calorimetry. A statistical Tobit model was used to predict VO2 from age, gender, body mass index (BMI) z-score and intensity levels. Estimated VO2peak was then determined from the heart rate-VO2 linear relationship extrapolated to maximal heart rate (220 minus age, in beats.min-1). VO2 (ml/kg/min) can be predicted using the following equation: VO2 = 22.82 - [0.68*BMI z-score] - [0.46*age (years)] - [0.93*gender (male = 0; female = 1)] + [4.07*intensity level (stage 1, 2, 3 etc.)] - [0.24*BMI z-score *intensity level] - [0.34*gender*intensity level]. VO2 was lower in participants with high BMI z-scores and in female subjects. The Chester step test can assess cardiorespiratory fitness in lean and obese children in clinical settings. Our adapted equation allows the Chester step test to be used to estimate peak aerobic capacity in children

    Pulmonary stenosis development and reduction of pulmonary arterial hypertension in atrioventricular septal defect: a case report

    Get PDF
    A 24-year-old patient was admitted for dyspnoea and syncope. He had a previous history of complete atrio-ventricular septal defect and trisomy 21. At the age of 6 months, in 1984, cardiac catheterization revealed a quasi-systemic pulmonary arterial hypertension with a bidirectional shunt corresponding to an Eisenmenger syndrome. Corrective cardiac surgery was not performed at this time because surgical risk was considered too high. Until the age of 20 years old, he showed few symptoms while under medical treatment. But since 2006, his functional status became worse with an increased dyspnoea, syncopes, and severe cyanosis. In these conditions, haemodynamic parameters have been re-evaluated in 2006 and 2008

    Echocardiographic Changes and Long-Term Clinical Outcomes in Pediatric Patients With Pulmonary Arterial Hypertension Treated With Bosentan for 72 Weeks:A Post-hoc Analysis From the FUTURE 3 Study

    Get PDF
    FormUlation of bosenTan in pUlmonary arterial hypeRtEnsion (FUTURE) 3 was a 24-week open-label, prospective, and randomized phase 3 study that assessed the pharmacokinetics of bosentan 2 mg/kg b.i.d. or t.i.d. in children with pulmonary arterial hypertension (PAH). We report findings from a post-hoc analysis that explored the prognostic value of echocardiographic changes during FUTURE 3 in relation to clinical outcomes observed during the 24-week core study and 48-week extension. Patients aged ≥3 months to <12 years (n = 64) received oral doses of bosentan 2 mg/kg b.i.d. or t.i.d. (1:1) for 24 weeks, after which they were eligible to enter the extension with continued bosentan administration. Echocardiographic evaluations were performed at baseline, Week 12, and 24 of the core study via central reading, and analyzed post-hoc for correlation with clinical outcomes (time to PAH worsening, time to death, and vital status). Sixty-four patients were randomized in the core study [median (IQR) age 3.8 (1.7–7.8) years]; and 58 patients (90.6%) entered the 48-week extension. Most of the patients (68.8%) were receiving ≥1 PAH medication at baseline. Echocardiographic changes during the core study were small but with high variability. There were statistically significant associations at Week 24 between worsening of the parameters, systolic left ventricular eccentricity index (LVEIS) and E/A ratio mitral valve flow, and the outcomes of time to death and time to PAH worsening. Additional studies that utilize simple and reproducible echocardiographic assessments are needed to confirm these findings and subsequently identify potential treatment goals in pediatric PAH

    Hemodynamic and prognostic impact of the diastolic pulmonary arterial pressure in children with pulmonary arterial hypertension-a registry-based analysis

    Get PDF
    BACKGROUND: Diastolic pulmonary arterial pressure (dPAP) is regarded to be less sensitive to flow metrics as compared to mean PAP (mPAP), and was therefore proposed for the assessment of a precapillary component in patients with postcapillary pulmonary hypertension (PH). To analyze the diagnostic and prognostic impact of dPAP in patients with pure precapillary PH, we purposed to compare the correlation between dPAP and mPAP, as well as hemodynamically-derived calculations [ratio of PAP to systemic arterial pressure (PAP/SAP), pulmonary vascular resistance index (PVRI), transpulmonary gradient (TPG)], using both dPAP and mPAP, at rest and during acute vasoreactivity testing (AVT) in children with idiopathic or heritable pulmonary arterial hypertension (IPAH/HPAH). Furthermore, we aimed to assess the association of these metrics (at baseline and changes after AVT) with transplant-free survival. METHODS: We conducted a retrospective analysis of the TOPP (Tracking Outcomes and Practice in Pediatric Pulmonary Hypertension) registry including 246 IPAH/HPAH patients. Of these, 45 children (18.3%) died, and 13 (5.3%) received lung transplantation during the observation period. RESULTS: dPAP and mPAP-derived variables showed almost linear relationship. Higher mPAP/mSAP, and dPAP-/mPAP-derived PVRI at rest was associated with time to death/transplantation. At maximum AVT-response, the decrease of dPAP and mPAP, diastolic pulmonary gradient (DPG) and TPG, as well as dPAP/dSAP and mPAP/mSAP was associated with time to death/transplantation, showing higher significance than corresponding baseline values. Remarkably, no predictive value was found for PVRI-reduction during AVT, neither dPAP- nor mPAP-derived. CONCLUSIONS: There is a strong relationship between dPAP and mPAP-derived variables. According to our results, hemodynamics during AVT (irrespectively of dPAP- or mPAP-derived) may have more prognostic implications than resting hemodynamics in children with IPAH/HPAH, except for PVRI

    Paediatric pulmonary arterial hypertension: updates on definition, classification, diagnostics and management.

    Get PDF
    Paediatric pulmonary arterial hypertension (PAH) shares common features of adult disease, but is associated with several additional disorders and challenges that require unique approaches. This article discusses recent advances, ongoing challenges and distinct approaches for the care of children with PAH, as presented by the Paediatric Task Force of the 6th World Symposium on Pulmonary Hypertension. We provide updates of the current definition, epidemiology, classification, diagnostics and treatment of paediatric PAH, and identify critical knowledge gaps. Several features of paediatric PAH including the prominence of neonatal PAH, especially in pre-term infants with developmental lung diseases, and novel genetic causes of paediatric PAH are highlighted. The use of cardiac catheterisation as a diagnostic modality and haemodynamic definitions of PAH, including acute vasoreactivity, are addressed. Updates are provided on issues related to utility of the previous classification system to reflect paediatric-specific aetiologies and approaches to medical and interventional management of PAH, including the Potts shunt. Although a lack of clinical trial data for the use of PAH-targeted therapy persists, emerging data are improving the identification of appropriate targets for goal-oriented therapy in children. Such data will likely improve future clinical trial design to enhance outcomes in paediatric PAH

    Application of a modified clinical classification for pulmonary arterial hypertension associated with congenital heart disease in children: emphasis on atrial septal defects and transposition of the great arteries. An analysis from the TOPP registry

    Get PDF
    AimsA proportion of patients with pulmonary arterial hypertension associated with congenital heart disease (PAH-CHD) do not fit in the current classification. We aimed to analyse the applicability of an adapted clinical classification of PAH-CHD to pediatric patients using the TOPP-1 registry (Tracking Outcomes and Practice in Pediatric Pulmonary Hypertension) and focus on atrial septal defects (ASD) and transposition of the great arteries (TGA).Methods and resultsHemodynamic and clinical data of all patients with PAH-CHD in the TOPP cohort were reviewed. Patients were classified according to predefined ABCDE categories (A: Eisenmenger syndrome, B: left-to-right shunt, C: coincidental defects, including all ASDs, D: corrected CHD, E: TGA), or as complex CHD (group 5), by 2 independent investigators. In case of disagreement, a third reviewer could either settle a final decision, or the patient was deemed not classifiable. Survival curves were calculated for each group and compared to idiopathic PAH patients of the registry. A total of 223 out of 531 patients in the registry had PAH-CHD, and 193 were categorized to the following groups: A 39(20%), B 27(14%), C 62(32%) including 43 ASDs, D 58(30%), E 7(4%), whereas 6 patients were categorized as group 5, and 10 patients were unable to be classified. No survival difference could be demonstrated between the groups.ConclusionsThis modified classification seems to be more applicable to pediatric PAH-CHD patients than the previous classification, but some patients with PAH-CHD who never had a shunt remain unclassifiable. The role of ASD in pediatric PH should be reconsidered
    corecore