29 research outputs found

    Sostdc1: A soluble BMP and Wnt antagonist that is induced by the interaction between myeloma cells and osteoblast lineage cells

    Get PDF
    Multiple myeloma (MM) is characterised by destructive lytic bone disease, caused by induction of bone resorption and impaired bone formation. Our understanding of the molecular mechanisms responsible for osteoblast suppression, are limited. Using the 5T2MM murine model of MM we have previously shown that suppression of the activity of a known inhibitor of bone formation Dikkopf-1 (Dkk1) prevents the development of lytic bone disease. Here we have demonstrated that another potential inhibitor of bone formation, sclerostin domain containing 1 (Sostdc1) is expressed at low levels in MM and osteoblast lineage cells when these cells are grown separately in cell culture but its expression is significantly induced in both cell types when these cells are in contact. The distribution of Sostdc1 staining in bones infiltrated with 5TGM1 myeloma cells in vivo suggested its presence in both myeloma and osteoblast lineage populations when in close proximity. We have also shown that recombinant Sostdc1 inhibits both bone morphogenic proteins (BMP2 and 7) and Wnt signalling in primary osteoblasts and suppresses differentiation of these cells. Together, these findings suggest that Sostdc1 expression in 5TGM1-infiltrated bones as a result of the interaction between myeloma and osteoblast lineage populations, could result in suppression of osteoblast differentiation

    Interaction of Cutibacterium (formerly Propionibacterium) acnes with bone cells: a step toward understanding bone and joint infection development

    Get PDF
    Cutibacterium acnes (formerly Propionibacterium acnes) is recognized as a pathogen in foreign-body infections (arthroplasty or spinal instrumentation). To date, the direct impact of C. acnes on bone cells has never been explored. The clade of 11 C. acnes clinical isolates was determined by MLST. Human osteoblasts and osteoclasts were infected by live C. acnes. The whole genome sequence of six isolates of this collection was analyzed. CC36 C. acnes strains were significantly less internalized by osteoblasts and osteoclasts than CC18 and CC28 C. acnes strains (p ≤ 0.05). The CC18 C. acnes ATCC6919 isolate could survive intracellularly for at least 96 hours. C. acnes significantly decreased the resorption ability of osteoclasts with a major impact by the CC36 strain (p ≤ 0.05). Genome analysis revealed 27 genes possibly linked to these phenotypic behaviors. We showed a direct impact of C. acnes on bone cells, providing new explanations about the development of C. acnes foreign-body infections

    ΔNp63α silences a microRNA program to aberrantly initiate a wound healing program that promotes TGFβ-induced metastasis.

    Get PDF
    Primary cancer cell dissemination is a key event during the metastatic cascade, but context-specific determinants of this process remain largely undefined. Multiple reports have suggested that the p53 (TP53) family member p63 (TP63) plays an anti-metastatic role through its minor epithelial isoform containing the N-terminal transactivation domain (TAp63). However, the role and contribution of the major p63 isoform lacking this domain, ΔNp63α, remain largely undefined. Here, we report a distinct and TAp63-independent mechanism by which ΔNp63α-expressing cells within a TGFβ-rich microenvironment become positively selected for metastatic dissemination. Orthotopic transplantation of ΔNp63α-expressing human osteosarcoma cells into athymic mice resulted in larger and more frequent lung metastases than transplantation of control cells. Mechanistic investigations revealed that ΔNp63α repressed miR-527 and miR-665, leading to the upregulation of two TGFβ effectors, SMAD4 and TβRII (TGFBR2). Furthermore, we provide evidence that this mechanism reflects a fundamental role for ΔNp63α in the normal wound healing response. We show that ΔNp63α-mediated repression of miR-527/665 controls a TGFβ-dependent signaling node that switches off anti-migratory miR-198 by suppressing the expression of the regulatory factor, KSRP (KHSRP). Collectively, these findings reveal that a novel microRNA network involved in the regulation of physiological wound healing responses is hijacked and suppressed by tumor cells to promote metastatic dissemination

    Osteoprotegerin: multiple partners for multiple functions.

    Get PDF
    Osteoprotegerin (OPG) is an essential secreted protein in bone turnover due to its role as a decoy receptor for the Receptor Activator of Nuclear Factor-kB ligand (RANKL) in the osteoclasts, thus inhibiting their differentiation. However, there are additional ligands of OPG that confer various biological functions. OPG can promote cell survival, cell proliferation and facilitates migration by binding TNF-related apoptosis inducing ligand (TRAIL), glycosaminoglycans or proteoglycans. A large number of in vitro, pre-clinical and clinical studies provide evidences of OPG involvement in vascular, bone, immune and tumor biology. This review describes an overview of the different OPG ligands regulating its biological functions

    Selective inhibition of BET bromodomain epigenetic signalling interferes with the bone-associated tumour vicious cycle

    Get PDF
    The vicious cycle established between bone-associated tumours and bone resorption is the central problem with therapeutic strategies against primary bone tumours and bone metastasis. Here we report data to support inhibition of BET bromodomain proteins as a promising therapeutic strategy that target simultaneously the three partners of the vicious cycle. Treatment with JQ1, a BET bromodomain inhibitor, reduces cell viability of osteosarcoma cells and inhibits osteoblastic differentiation both in vitro and in vivo. These effects are associated with transcriptional silencing of MYC and RUNX2, resulting from the depletion of BRD4 from their respective loci. Moreover, JQ1 also inhibits osteoclast differentiation by interfering with BRD4-dependent RANKL activation of NFATC1 transcription. Collectively, our data indicate that JQ1 is a potent inhibitor of osteoblast and osteoclast differentiation as well as bone tumour development

    RANKL, RANK, osteoprotegerin: key partners of osteoimmunology and vascular diseases

    No full text
    1997 saw the identification of a novel set of proteins within the tumor necrosis factor (TNF)/TNF receptor families that are required for the control of bone remodeling. Therefore, these receptors, receptor activator of nuclear factor kappa B (RANK), osteoprotegerin (OPG) and their ligand RANK ligand (RANKL) became the critical molecular triad controlling osteoclastogenesis and pathophysiologic bone remodeling. However, the establishment of the corresponding knock-out and transgenic mice revealed unexpected results, most particularly, the involvement of these factors in the vascular system and immunity. Thus, the OPG/RANK/RANKL molecular triad appears to be associated with vascular calcifications and plays a pivotal function in the development of the immune system through dendritic cells. OPG/RANK/RANKL thus constitute a molecular bridge spanning bone metabolism, vascular biology and immunity. This review summarizes recent knowledge of OPG/RANK/RANKL interactions and activities as well as the current evidence for their participation in osteoimmunology and vascular diseases. In fine, the targeting of the OPG/RANK/RANKL axis as novel therapeutic approaches will be discussed

    Effects of a sulfated exopolysaccharide produced by Altermonas infernus on bone biology

    Get PDF
    The growth and differentiation of bone cells is controlled by various factors which can be modulated by heparan sulphates. Here, we investigated the effects of an oversulphated “heparin-like” exopolysaccharide (OS-EPS) on bone. We compared the effect of this compound with that of a native exopolysaccharide (EPS). Long-term administration of OS-EPS causes cancellous bone loss in mice due, in part, to an increase in the number of osteoclasts lining the trabecular bone surface. No significant difference in cancellous bone volume was found between EPS-treated mice and age-matched control mice, underlying the importance of sulphatation in trabecular bone loss. However, the mechanism sustaining this osteoporosis was unclear. To clarify OS-EPS activities, we investigated the effect of OS-EPS in osteogenesis. Our results demonstrated that OS-EPS inhibited osteoclastogenesis in two cell models. By surface plasmon resonance technique we revealed that OS-EPS can constitute a hetero-molecular complex OS-EPS/RANKL/RANK and that RANK had a higher affinity for RANKL pre-incubated with OS-EPS than for RANKL alone which would be in favour of an increase in bone resorption. However, in vitro, OS-EPS inhibit the early steps of osteoclast precursor adhesion and therefore inhibits the step of cell fusion. In addition, we showed that OS-EPS reduces the proliferation and accelerates osteoblastic differentiation, leading to strong inhibition of mineralized nodule formation, which would be in favour of an increase in bone resorption. Taken together, these data show different levels of bone resorption regulation by exopolysaccharides, most of them leading to proresorptive effects

    Interleukin-34 is expressed by giant cell tumours of bone and plays a key role in RANKL-induced osteoclastogenesis

    No full text
    Interleukin-34 (IL-34) is a newly discovered regulator of myeloid lineage differentiation, proliferation, and survival, acting via the macrophage-colony stimulating factor receptor (M-CSF receptor, c-fms). M-CSF, the main ligand for c-fms, is required for osteoclastogenesis and has been already identified as a critical contributor of the pathogenesis of giant cell tumours of bone (GCTs), tumours rich in osteoclasts. According to the key role of M-CSF in osteoclastogenesis and GCTs, the expression of IL-34 in human GCTs was first assessed. Quantitative analysis of IL-34 mRNA expression in 14 human GCTs revealed expression of this cytokine in GCTs as well as M-CSF and c-fms. Immunohistochemistry demonstrated that osteoclast-like cells exhibited a huge immunostaining for IL-34 and that mononuclear stromal cells were slightly positive for this protein. In contrast to osteoblasts, bone-resorbing osteoclasts showed very strong staining for IL-34, suggesting its potential role in the pathogenesis of GCTs by facilitating osteoclast formation. The role of IL-34 in osteoclastogenesis was then studied in murine and human models. IL-34 was able to support RANKL-induced osteoclastogenesis in the absence of M-CSF in all models. Multinucleated cells generated in the presence of IL-34 and RANKL expressed specific osteoclastic markers and resorbed dentine. IL-34 induced phosphorylation of ERK 1/2 and Akt through the activation of c-fms, as revealed by the inhibition of signalling by a specific c-fms tyrosine kinase inhibitor. Furthermore, IL-34 stimulated RANKL-induced osteoclastogenesis by promoting the adhesion and proliferation of osteoclast progenitors, and had no effect on osteoclast survival. Overall, these data reveal that IL-34 can be entirely substituted for M-CSF in RANKL-induced osteoclastogenesis, thus identifying a new biological activity for this cytokine and a contribution to the pathogenesis of GCTs

    Glycosaminoglycans inhibit the adherence and the spreading of osteoclasts and their precursors: Role in osteoclastogenesis and bone resorption

    Get PDF
    The bone microenvironment (e.g. glycosaminoglycans (GAGs), growth factors) plays a major role in bone resorption, especially in the formation of osteoclasts which differentiate from the hematopoietic lineage in the presence of RANKL. Previous studies revealed that GAGs may influence osteoclastogenesis, but data are very controversial, some studies showing an inhibitory effect of GAGs on osteoclastic differentiation whereas others demonstrated a stimulatory effect. To clarify their activities, we investigated the effect of 5 families of GAGs in three different models of human/mouse osteoclastogenesis. The present data revealed that heparin inhibited osteoclastogenesis in these three models, which was confirmed by a decrease in mRNA expression of osteoclastic markers and by an inhibition of the bone resorption capacity. We also demonstrated in RAW 264.7 cells that other families of GAGs different from heparin inhibited RANKL-induced osteoclastogenesis, and that this inhibition was dependent on the length and the level of sulfation of GAGs. In the present work, heparin did not bind to RANKL and did not modulate RANKL signaling. Heparin acted at 2 distinct steps of osteoclastogenesis from human CD14+ cells: first, heparin strongly decreased the adherence of osteoclast precursors, and secondly inhibited osteoclasts to spread and to be active. Furthermore, the second action of heparin was reversible as the removal of heparin at the end of the culture time allowed the condensed cells to spread out and showed the formation of morphological active osteoclasts. The present work clearly evidences that GAGs inhibit osteoclastogenesis in vitro and strengthens the therapeutic interest of defined GAGs in osteolytic diseases
    corecore