26 research outputs found

    Expanding the Versatility of Phage Display I: Efficient Display of Peptide-Tags on Protein VII of the Filamentous Phage

    Get PDF
    Background: Phage display is a platform for selection of specific binding molecules and this is a clear-cut motivation for increasing its performance. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII), or the minor coat protein III (pIII). Display on other coat proteins such as pVII allows for display of heterologous peptide sequences on the virions in addition to those displayed on pIII and pVIII. In addition, pVII display is an alternative to pIII or pVIII display. Methodology/Principal Findings: Here we demonstrate how standard pIII or pVIII display phagemids are complemented with a helper phage which supports production of virions that are tagged with octa FLAG, HIS6 or AviTag on pVII. The periplasmic signal sequence required for pIII and pVIII display, and which has been added to pVII in earlier studies, is omitted altogether. Conclusions/Significance: Tagging on pVII is an important and very useful add-on feature to standard pIII and pVII display. Any phagemid bearing a protein of interest on either pIII or pVIII can be tagged with any of the tags depending simply on choice of helper phage. We show in this paper how such tags may be utilized for immobilization and separation as well as purification and detection of monoclonal and polyclonal phage populations. © 2011 Wälchli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Expanding the Versatility of Phage Display II: Improved Affinity Selection of Folded Domains on Protein VII and IX of the Filamentous Phage

    Get PDF
    Background: Phage display is a leading technology for selection of binders with affinity for specific target molecules. Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII) or the minor coat protein III (pIII). Whereas pVIII display suffers from drawbacks such as heterogeneity in display levels and polypeptide fusion size limitations, toxicity and infection interference effects have been described for pIII display. Thus, display on other coat proteins such as pVII or pIX might be more attractive. Neither pVII nor pIX display have gained widespread use or been characterized in detail like pIII and pVIII display. Methodology/Principal Findings: Here we present a side-by-side comparison of display on pIII with display on pVII and pIX. Polypeptides of interest (POIs) are fused to pVII or pIX. The N-terminal periplasmic signal sequence, which is required for phage integration of pIII and pVIII and that has been added to pVII and pIX in earlier studies, is omitted altogether. Although the POI display level on pIII is higher than on pVII and pIX, affinity selection with pVII and pIX display libraries is shown to be particularly efficient. Conclusions/Significance: Display through pVII and/or pIX represent platforms with characteristics that differ from those of the pIII platform. We have explored this to increase the performance and expand the use of phage display. In the paper, we describe effective affinity selection of folded domains displayed on pVII or pIX. This makes both platforms more attractive alternatives to conventional pIII and pVIII display than they were before. © 2011 Wälchli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

    Learning the meanings of words from contexts and definitions: ERP Evidence

    No full text
    Purpose: We conducted an ERP experiment on the learning of word meanings by context and definition aimed at two related hypotheses: (1) A word is better integrated into the meaning of a sentence when it is learned through sentence contexts rather than definitions. (2) Integration is also affected by variation in sentence contexts. Method: Adults learned the meaning of unfamiliar words by reading sentences that contained the word or a definition. Sentence contexts were repeated or varied over 4 occurrences. Following learning, participants read sentences that contained a key word, either one they had learned or a matched control word, and judged whether the sentence made sense. Results: The N400, an index of word-to context integration, was reduced when a learned word made sense. However, this reduction was greatest for words that had been experienced in context, and reliably smaller for words experienced in definitions. The N400 was also reduced more following 4 varied sentence contexts than a single repeated context. Conclusions: The results provide clear evidence for both hypotheses. The advantage for learning word meaning from contexts is explained by the convergence of meaning features across various sentences, which allows stronger overlap of episodic memory traces. A similar explanation holds for the positive effect of context variability

    The cholinergic antagonist α-bungarotoxin also binds and blocks a subset of GABA receptors

    No full text
    The polypeptide snake toxin α-bungarotoxin (BTX) has been used in hundreds of studies on the structure, function, and development of the neuromuscular junction because it binds tightly and specifically to the nicotinic acetylcholine receptors (nAChRs) at this synapse. We show here that BTX also binds to and blocks a subset of GABA(A) receptors (GABA(A)Rs) that contain the GABA(A)R β3 subunit. These results introduce a previously unrecognized tool for analysis of GABA(A)Rs but may complicate interpretation of some studies on neuronal nAChRs

    Characterizing monoclonal antibody epitopes by filtered gene fragment phage display

    No full text
    In the present paper, we describe a novel approach to map monoclonal antibody epitopes, using three new monoclonal antibodies that recognize h-TG2 (human transglutaminase 2) as an example. The target gene was fragmented and cloned upstream of an antibiotic-resistance gene, in the vector pPAO2, to select for in-frame polypeptides. After removal of the antibiotic-resistance gene by Cre/Lox recombination, an antigen fragment phage display library was created and selected against specific monoclonal antibodies. Using the h-TG2 fragment library, we were able to identify epitopes. This technique can also be broadly applied to the study of protein–protein interactions
    corecore