13,250 research outputs found
Wolf-Rayet and LBV Nebulae as the Result of Variable and Non-Spherical Stellar Winds
The physical basis for interpreting observations of nebular morphology around
massive stars in terms of the evolution of the central stars is reviewed, and
examples are discussed, including NGC 6888, OMC-1, and eta Carinae.Comment: To be published in the Proceedings of IAU Colloquium 169 on Variable
and Non-Spherical Stellar Winds in Luminous Hot Stars, ed. B. Wolf
(Springer-Verlag, Berlin, Heidelberg). 7 pages, including 5 figures. A
full-resolution version of fig 4 is available in the version at
http://www.mpia-hd.mpg.de/theory/preprints.html#maclo
The Counting of Generalized Polarizabilities
We demonstrate a concise method to enumerate the number of generalized
polarizabilities---quantities characterizing the independent observables in
singly-virtual Compton scattering---for a target particle of arbitrary spin s.
By using crossing symmetry and J^{PC} conservation, we show that this number is
(10s+1+delta_{s,0}).Comment: 10 pages, revtex4, no figures. Version to appear in Phys. Rev. D.
Paper now divided into sections and clarifying comments added, but physics
content unchange
On the rate of black hole binary mergers in galactic nuclei due to dynamical hardening
We assess the contribution of dynamical hardening by direct three-body
scattering interactions to the rate of stellar-mass black hole binary (BHB)
mergers in galactic nuclei. We derive an analytic model for the single-binary
encounter rate in a nucleus with spherical and disk components hosting a
super-massive black hole (SMBH). We determine the total number of encounters
needed to harden a BHB to the point that inspiral due to
gravitational wave emission occurs before the next three-body scattering event.
This is done independently for both the spherical and disk components. Using a
Monte Carlo approach, we refine our calculations for to include
gravitational wave emission between scattering events. For astrophysically
plausible models we find that typically 10.
We find two separate regimes for the efficient dynamical hardening of BHBs:
(1) spherical star clusters with high central densities, low velocity
dispersions and no significant Keplerian component; and (2) migration traps in
disks around SMBHs lacking any significant spherical stellar component in the
vicinity of the migration trap, which is expected due to effective orbital
inclination reduction of any spherical population by the disk. We also find a
weak correlation between the ratio of the second-order velocity moment to
velocity dispersion in galactic nuclei and the rate of BHB mergers, where this
ratio is a proxy for the ratio between the rotation- and dispersion-supported
components. Because disks enforce planar interactions that are efficient in
hardening BHBs, particularly in migration traps, they have high merger rates
that can contribute significantly to the rate of BHB mergers detected by the
advanced Laser Interferometer Gravitational-Wave Observatory.Comment: 13 pages, 9 figures, accepted for publication in MNRA
Commuting Position and Momentum Operators, Exact Decoherence and Emergent Classicality
Inspired by an old idea of von Neumann, we seek a pair of commuting operators
X,P which are, in a specific sense, "close" to the canonical non-commuting
position and momentum operators, x,p. The construction of such operators is
related to the problem of finding complete sets of orthonormal phase space
localized states, a problem severely constrained by the Balian-Low theorem.
Here these constraints are avoided by restricting attention to situations in
which the density matrix is reasonably decohered (i.e., spread out in phase
space). Commuting position and momentum operators are argued to be of use in
discussions of emergent classicality from quantum mechanics. In particular,
they may be used to give a discussion of the relationship between exact and
approximate decoherence in the decoherent histories approach to quantum theory.Comment: 28 pages, RevTe
Loss of star forming gas in SDSS galaxies
Using the star formation rates from the SDSS galaxy sample, extracted using
the MOPED algorithm, and the empirical Kennicutt law relating star formation
rate to gas density, we calculate the time evolution of the gas fraction as a
function of the present stellar mass. We show how the gas-to-stars ratio varies
with stellar mass, finding good agreement with previous results for smaller
samples at the present epoch. For the first time we show clear evidence for
progressive gas loss with cosmic epoch, especially in low-mass systems. We find
that galaxies with small stellar masses have lost almost all of their cold
baryons over time, whereas the most massive galaxies have lost little. Our
results also show that the most massive galaxies have evolved faster and turned
most of their gas into stars at an early time, thus strongly supporting a
downsizing scenario for galaxy evolution.Comment: 29 pages, 9 figures, ApJ, accepte
Corrections to deuterium hyperfine structure due to deuteron excitations
We consider the corrections to deuterium hyperfine structure originating from
the two-photon exchange between electron and deuteron, with the deuteron
excitations in the intermediate states. In particular, the motion of the two
intermediate nucleons as a whole is taken into account. The problem is solved
in the zero-range approximation. The result is in good agreement with the
experimental value of the deuterium hyperfine splitting.Comment: 7 pages, LaTe
Density, Velocity, and Magnetic Field Structure in Turbulent Molecular Cloud Models
We use 3D numerical MHD simulations to follow the evolution of cold,
turbulent, gaseous systems with parameters representing GMC conditions. We
study three cloud simulations with varying mean magnetic fields, but identical
initial velocity fields. We show that turbulent energy is reduced by a factor
two after 0.4-0.8 flow crossing times (2-4 Myr), and that the magnetically
supercritical cloud models collapse after ~6 Myr, while the subcritical cloud
does not collapse. We compare density, velocity, and magnetic field structure
in three sets of snapshots with matched Mach numbers. The volume and column
densities are both log-normally distributed, with mean volume density a factor
3-6 times the unperturbed value, but mean column density only a factor 1.1-1.4
times the unperturbed value. We use a binning algorithm to investigate the
dependence of kinetic quantities on spatial scale for regions of column density
contrast (ROCs). The average velocity dispersion for the ROCs is only weakly
correlated with scale, similar to the mean size-linewidth relation for clumps
within GMCs. ROCs are often superpositions of spatially unconnected regions
that cannot easily be separated using velocity information; the same difficulty
may affect observed GMC clumps. We analyze magnetic field structure, and show
that in the high density regime, total magnetic field strengths increase with
density with logarithmic slope 1/3 -2/3. Mean line-of-sight magnetic field
strengths vary widely across a projected cloud, and do not correlate with
column density. We compute simulated interstellar polarization maps at varying
orientations, and determine that the Chandrasekhar-Fermi formula multiplied by
a factor ~0.5 yields a good estimate of the plane-of sky magnetic field
strength provided the dispersion in polarization angles is < 25 degrees.Comment: 56 pages, 25 figures; Ap.J., accepte
Solitons in Tonks-Girardeau gas with dipolar interactions
The existence of bright solitons in the model of the Tonks-Girardeau (TG) gas
with dipole-dipole (DD) interactions is reported. The governing equation is
taken as the quintic nonlinear Schr\"{o}dinger equation (NLSE) with the
nonlocal cubic term accounting for the DD attraction. In different regions of
the parameter space (the dipole moment and atom number), matter-wave solitons
feature flat-top or compacton-like shapes. For the flat-top states, the NLSE
with the local cubic-quintic (CQ) nonlinearity is shown to be a good
approximation. Specific dynamical effects are studied assuming that the
strength of the DD interactions is ramped up or drops to zero. Generation of
dark-soliton pairs in the gas shrinking under the action of the intensifying DD
attraction is observed. Dark solitons exhibit the particle-like collision
behavior. Peculiarities of dipole solitons in the TG gas are highlighted by
comparison with the NLSE including the local CQ terms. Collisions between the
solitons are studied too. In many cases, the collisions result in merger of the
solitons into a breather, due to strong attraction between them.Comment: 15 pages, 8 figures, accepted by J. Phys. B: At. Mol. Opt. Phy
Granular Scale Magnetic Flux Cancellations in the Photosphere
We investigate the evolution of 5 granular-scale magnetic flux cancellations
just outside the moat region of a sunspot by using accurate spectropolarimetric
measurements and G-band images with the Solar Optical Telescope aboard Hinode.
The opposite polarity magnetic elements approach a junction of the
intergranular lanes and then they collide with each other there. The
intergranular junction has strong red shifts, darker intensities than the
regular intergranular lanes, and surface converging flows. This clearly
confirms that the converging and downward convective motions are essential for
the approaching process of the opposite-polarity magnetic elements. However,
motion of the approaching magnetic elements does not always match with their
surrounding surface flow patterns in our observations. This suggests that, in
addition to the surface flows, subsurface downward convective motions and
subsurface magnetic connectivities are important for understanding the approach
and collision of the opposite polarity elements observed in the photosphere. We
find that the horizontal magnetic field appears between the canceling opposite
polarity elements in only one event. The horizontal fields are observed along
the intergranular lanes with Doppler red shifts. This cancellation is most
probably a result of the submergence (retraction) of low-lying photospheric
magnetic flux. In the other 4 events, the horizontal field is not observed
between the opposite polarity elements at any time when they approach and
cancel each other. These approaching magnetic elements are more concentrated
rather than gradually diffused, and they have nearly vertical fields even while
they are in contact each other. We thus infer that the actual flux cancellation
is highly time dependent events at scales less than a pixel of Hinode SOT
(about 200 km) near the solar surface.Comment: Accepted for publication in the Astrophysical Journa
- …
