23,077 research outputs found
Differential Astrometry of Sub-arcsecond Scale Binaries at the Palomar Testbed Interferometer
We have used the Palomar Testbed Interferometer to perform very high
precision differential astrometry on the 0.25 arcsecond separation binary star
HD 171779. In 70 minutes of observation we achieve a measurement uncertainty of
approximately 9 micro-arcseconds in one axis, consistent with theoretical
expectations. Night-to-night repeatability over four nights is at the level of
16 micro-arcseconds. This method of very-narrow-angle astrometry may be
extremely useful for searching for planets with masses as small as 0.5 Jupiter
Masses around a previously neglected class of stars -- so-called ``speckle
binaries.'' It will also provide measurements of stellar parameters such as
masses and distances, useful for constraining stellar models at the 10^-3
level.Comment: 19 pages including 6 figures. Submitted to ApJ. Typos corrected,
several parts reworded for clarificatio
Charge assignments in multiple-U(1) gauge theories
We discuss the choice of gauge field basis in multiple-U(1) gauge theories.
We find that there is a preferred basis, specified by the charge orthogonality
condition, in which the U(1) gauge fields do not mix under one-loop
renormalization group running.Comment: 7 pages, LaTe
Calibration of Computational Models with Categorical Parameters and Correlated Outputs via Bayesian Smoothing Spline ANOVA
It has become commonplace to use complex computer models to predict outcomes
in regions where data does not exist. Typically these models need to be
calibrated and validated using some experimental data, which often consists of
multiple correlated outcomes. In addition, some of the model parameters may be
categorical in nature, such as a pointer variable to alternate models (or
submodels) for some of the physics of the system. Here we present a general
approach for calibration in such situations where an emulator of the
computationally demanding models and a discrepancy term from the model to
reality are represented within a Bayesian Smoothing Spline (BSS) ANOVA
framework. The BSS-ANOVA framework has several advantages over the traditional
Gaussian Process, including ease of handling categorical inputs and correlated
outputs, and improved computational efficiency. Finally this framework is then
applied to the problem that motivated its design; a calibration of a
computational fluid dynamics model of a bubbling fluidized which is used as an
absorber in a CO2 capture system
Ultracold, radiative charge transfer in hybrid Yb ion - Rb atom traps
Ultracold hybrid ion-atom traps offer the possibility of microscopic
manipulation of quantum coherences in the gas using the ion as a probe.
However, inelastic processes, particularly charge transfer can be a significant
process of ion loss and has been measured experimentally for the Yb ion
immersed in a Rb vapour. We use first-principles quantum chemistry codes to
obtain the potential energy curves and dipole moments for the lowest-lying
energy states of this complex. Calculations for the radiative decay processes
cross sections and rate coefficients are presented for the total decay
processes. Comparing the semi-classical Langevin approximation with the quantum
approach, we find it provides a very good estimate of the background at higher
energies. The results demonstrate that radiative decay mechanisms are important
over the energy and temperature region considered. In fact, the Langevin
process of ion-atom collisions dominates cold ion-atom collisions. For spin
dependent processes \cite{kohl13} the anisotropic magnetic dipole-dipole
interaction and the second-order spin-orbit coupling can play important roles,
inducing couplingbetween the spin and the orbital motion. They measured the
spin-relaxing collision rate to be approximately 5 orders of magnitude higher
than the charge-exchange collision rate \cite{kohl13}. Regarding the measured
radiative charge transfer collision rate, we find that our calculation is in
very good agreement with experiment and with previous calculations.
Nonetheless, we find no broad resonances features that might underly a strong
isotope effect. In conclusion, we find, in agreement with previous theory that
the isotope anomaly observed in experiment remains an open question.Comment: 7 figures, 1 table accepted for publication in J. Phys. B: At. Mol.
Opt. Phys. arXiv admin note: text overlap with arXiv:1107.114
Introduction to Categories and Categorical Logic
The aim of these notes is to provide a succinct, accessible introduction to
some of the basic ideas of category theory and categorical logic. The notes are
based on a lecture course given at Oxford over the past few years. They contain
numerous exercises, and hopefully will prove useful for self-study by those
seeking a first introduction to the subject, with fairly minimal prerequisites.
The coverage is by no means comprehensive, but should provide a good basis for
further study; a guide to further reading is included. The main prerequisite is
a basic familiarity with the elements of discrete mathematics: sets, relations
and functions. An Appendix contains a summary of what we will need, and it may
be useful to review this first. In addition, some prior exposure to abstract
algebra - vector spaces and linear maps, or groups and group homomorphisms -
would be helpful.Comment: 96 page
Dynamical symmetry of isobaric analog 0+ states in medium mass nuclei
An algebraic sp(4) shell model is introduced to achieve a deeper
understanding and interpretation of the properties of pairing-governed 0+
states in medium mass atomic nuclei. The theory, which embodies the simplicity
of a dynamical symmetry approach to nuclear structure, is shown to reproduce
the excitation spectra and fine structure effects driven by proton-neutron
interactions and isovector pairing correlations across a broad range of nuclei.Comment: 7 pages, 5 figure
Composite Scalars at LEP: Constraining Technicolor Theories
LEPI and LEPII data can be used to constrain technicolor models with light,
neutral pseudo-Nambu-Goldstone bosons, Pa. We use published limits on branching
ratios and cross sections for final states with photons, large missing energy,
jet pairs, and b bbar pairs to constrain the anomalous Pa Z0 Z0, Pa Z0 photon,
and Pa photon photon couplings. From these results, we derive bounds on the
size of the technicolor gauge group and the number of technifermion doublets in
models such as Low-scale Technicolor.Comment: 27 pages (including title page), 15 figures, 6 tables. version 2: In
addressing PRD referee comments, we have significantly expanded our
manuscript, to include detailed discussion of limits from LEP II data, as
well as expanding the number or specific models to which we apply our
results. As a result, we have changed the title from "Z0 decays to composite
scalars: constraining technicolor theories
- …