10,546 research outputs found

    Spot distribution and fast surface evolution on Vega

    Full text link
    Spectral signatures of surface spots were recently discovered from high cadence observations of the A star Vega. We aim at constraining the surface distribution of these photospheric inhomogeneities, and investigating a possible short term evolution of the spot pattern. Using data collected over five consecutive nights, we employ the Doppler Imaging method to reconstruct three different maps of the stellar surface, from three consecutive subsets of the whole time-series. The surface maps display a complex distribution of dark and bright spots, covering most of the visible fraction of the stellar surface. A number of surface features are consistently recovered in all three maps, but other features seem to evolve over the time span of observations, suggesting that fast changes can affect the surface of Vega within a few days at most. The short-term evolution is observed as emergence or disappearance of individual spots, and may also show up as zonal flows, with low-latitude and high latitude belts rotating faster than intermediate latitudes. It is tempting to relate the surface brightness activity to the complex magnetic field topology previously reconstructed for Vega, although strictly simultaneous brightness and magnetic maps will be necessary to assess this potential link.Comment: MNRAS Letters, in pres

    Excitation of stellar p-modes by turbulent convection: 1. Theoretical formulation

    Get PDF
    Stochatic excitation of stellar oscillations by turbulent convection is investigated and an expression for the power injected into the oscillations by the turbulent convection of the outer layers is derived which takes into account excitation through turbulent Reynolds stresses and turbulent entropy fluctuations. This formulation generalizes results from previous works and is built so as to enable investigations of various possible spatial and temporal spectra of stellar turbulent convection. For the Reynolds stress contribution and assuming the Kolmogorov spectrum we obtain a similar formulation than those derived by previous authors. The entropy contribution to excitation is found to originate from the advection of the Eulerian entropy fluctuations by the turbulent velocity field. Numerical computations in the solar case in a companion paper indicate that the entropy source term is dominant over Reynold stress contribution to mode excitation, except at high frequencies.Comment: 14 pages, accepted for publication in A&

    Hopf Categories

    Full text link
    We introduce Hopf categories enriched over braided monoidal categories. The notion is linked to several recently developed notions in Hopf algebra theory, such as Hopf group (co)algebras, weak Hopf algebras and duoidal categories. We generalize the fundamental theorem for Hopf modules and some of its applications to Hopf categories.Comment: 47 pages; final version to appear in Algebras and Representation Theor

    Dephasing of quantum dot exciton polaritons in electrically tunable nanocavities

    Full text link
    We experimentally and theoretically investigate dephasing of zero dimensional microcavity polaritons in electrically tunable single dot photonic crystal nanocavities. Such devices allow us to alter the dot-cavity detuning in-situ and to directly probe the influence on the emission spectrum of varying the incoherent excitation level and the lattice temperature. By comparing our results with theory we obtain the polariton dephasing rate and clarify its dependence on optical excitation power and lattice temperature. For low excitation levels we observe a linear temperature dependence, indicative of phonon mediated polariton dephasing. At higher excitation levels, excitation induced dephasing is observed due to coupling to the solid-state environment. The results provide new information on coherence properties of quantum dot microcavity polaritons.Comment: Figure 2, panel (b) changed to logarithmic + linear scal

    Charged Higgs-boson production in association with an electron and a neutrino at electron-positron colliders

    Full text link
    We present results of a calculation of the cross section for the production of a charged Higgs boson in association with an electron and a neutrino at electron-positron colliders (e+ e- -> H+ e- nu_e-bar, H- e+ nu_e). We study predictions for the cross section in the Minimal Supersymmetric Standard Model (MSSM) and the Two Higgs Doublet Model (THDM), highlighting possible differences. The process is effectively loop-induced in both models. Hence, the cross section is expected to be strongly model-dependent. Most notably, due to the presence of superpartners, the MSSM amplitude contains Feynman graphs of pentagon-type, which are not present in the THDM. This is the first complete one-loop calculation of the cross section for this process in the THDM and the MSSM. For both models, so far, only approximate results with limited ranges of validity were available. Our main aim here is to clarify several open questions in the existing literature on this process. Specifically, we will discuss the validity of the Heavy Fermion loop approximation in both models, and of the Fermion/Sfermion loop approximation in the MSSM.Comment: 21 pages, 8 figures, 1 tabl

    Vortices, shocks, and heating in the solar photosphere: effect of a magnetic field

    Full text link
    Aims: We study the differences between non-magnetic and magnetic regions in the flow and thermal structure of the upper solar photosphere. Methods: Radiative MHD simulations representing a quiet region and a plage region, respectively, which extend into the layers around the temperature minimum, are analyzed. Results: The flow structure in the upper photospheric layers of the two simulations is considerably different: the non-magnetic simulation is dominated by a pattern of moving shock fronts while the magnetic simulation shows vertically extended vortices associated with magnetic flux concentrations. Both kinds of structures induce substantial local heating. The resulting average temperature profiles are characterized by a steep rise above the temperature minimum due to shock heating in the non-magnetic case and by a flat photospheric temperature gradient mainly caused by Ohmic dissipation in the magnetic run. Conclusions: Shocks in the quiet Sun and vortices in the strongly magnetized regions represent the dominant flow structures in the layers around the temperature minimum. They are closely connected with dissipation processes providing localized heating.Comment: Accepted for publicaton in A&
    corecore