12 research outputs found

    Paleoseismic History of the Dead Sea Fault Zone

    No full text
    International audienceThe aim of this entry is to describe the DSF as a transform plate boundary pointing out the rate of activedeformation, fault segmentation, and geometrical complexities as a control of earthquake ruptures. Thedistribution of large historical earthquakes from a revisited seismicity catalogue using detailedmacroseismic maps allows the correlation between the location of past earthquakes and fault segments.The recent results of paleoearthquake investigations (paleoseismic and archeoseismic) with a recurrenceinterval of large events and long-term slip rate are presented and discussed along with the identification ofseismic gaps along the fault. Finally, the implications for the seismic hazard assessment are also discussed

    5000 yr of paleoseismicity along the southern Dead Sea fault

    No full text
    International audienceS U M M A R Y The 1000-km-long left-lateral Dead Sea fault is a major tectonic structure of the oriental Mediterranean basin, bounding the Arabian Plate to the west. The fault is located in a region with an exceptionally long and rich historical record, allowing to document historical seismicity catalogues with unprecedented level of details. However, if the earthquake time series is well documented, location and lateral extent of past earthquakes remain often difficult to establish, if only based on historical testimonies. We excavated a palaeoseismic trench in a site located in a kilometre-size extensional jog, south of the Dead Sea, in the Wadi Araba. Based on the stratigraphy exposed in the trench, we present evidence for nine earthquakes that produced surface ruptures during a time period spanning 5000 yr. Abundance of datable material allows us to tie the five most recent events to historical earthquakes with little ambiguities, and to constrain the possible location of these historical earthquakes. The events identified at our site are the 1458 C.E., 1212 C.E., 1068 C.E., one event during the 8th century crisis, and the 363 C.E. earthquake. Four other events are also identified, which correlation with historical events remains more speculative. The magnitude of earthquakes is difficult to assess based on evidence at one site only. The deformation observed in the excavation, however, allows discriminating between two classes of events that produced vertical deformation with one order of amplitude difference, suggesting that we could distinguish earthquakes that started/stopped at our site from earthquakes that potentially ruptured most of the Wadi Araba fault. The time distribution of earthquakes during the past 5000 yr is uneven. The early period shows little activity with return interval of ∌500 yr or longer. It is followed by a ∌1500-yr-long period with more frequent events, about every 200 yr. Then, for the past ∌550 yr, the fault has switched back to a quieter mode with no significant earthquake along the entire southern part of the Dead Sea fault, between the Dead Sea and the Gulf of Aqaba. We computed the Coefficient of Variation for our site and three other sites along the Dead Sea fault, south of Lebanon, to compare time distribution of earthquakes at different locations along the fault. With one exception at a site located next to Lake Tiberias, the three other sites are consistent to show some temporal clustering at the scale of few thousands years

    Slip deficit and temporal clustering along the Dead Sea fault from paleoseismological investigations

    Get PDF
    International audienceTemporal distribution of earthquakes is key to seismic hazard assessment. However, for most fault systems shortness of large earthquake catalogues makes this assessment difficult. Its unique long earthquake record makes the Dead Sea fault (DSF) exceptional to test earthquake behaviour models. A paleoseismological trench along the southern section of the DSF, revealed twelve surface-rupturing earthquakes during the last 8000 years, of which many correlate with past earthquakes reported in historical chronicles. These data allowed us building a rupture scenario for this area, which includes timing and rupture length for all significant earthquakes during the last two millenaries. Extending this rupture scenario to the entire DSF south of Lebanon, we were able to confirm the temporal-clustering hypothesis. Using rupture length and scaling laws, we have estimated average co-seismic slip for each past earthquake. The cumulated slip was then balanced with long-term tectonic loading to estimate the slip deficit for this part of DSF over the last 1600 years. The seismic-slip budget shows that the slip deficit is similarly high along the fault with a minimum of 2 meters, which suggests that an earthquake cluster might happen over the entire region in the near future. Successions of intense periods of seismic activity rupturing significant length of a fault followed by longer periods of seismic quiescence have been documented along several strike-slip faults 1-6 , suggesting that temporal clustering of earthquakes might be a common behaviour for major strike-slip faults. Testing this assumption, however, has long been hampered by the lack of consistent earthquake time series for long-enough fault sections. Moreover, temporal clustering remains a critical issue for seismic hazard models that only started to be addressed in the most recent modelling attempts

    Structure and Deformation History of the Rapidly Growing Tainan Anticline at the Deformation Front of the Taiwan Mountain Belt

    No full text
    International audienceThis study aims at further documenting the mechanisms of shortening at the front of fold-and-thrust belts. We focus on an actively growing anticline located at the deformation front of the Taiwan fold-and-thrust belt. Based on a multidisciplinary approach combining mainly subsurface data and geodetic techniques, we show that the Tainan anticline is a pure-shear fault-bend fold growing above a 38-45° west dipping back thrust, the Houchiali fault, rooted on a 3.8-km-deep detachment. The cumulative shortening is estimated at 2-3 km since 310 ± 50 ka, including 30-50% of horizontal compaction shortening. The significance of the fold is little in terms of total shortening at the scale of the mountain piedmont, yet the Holocene shortening rate of 10.3 ± 1.0 mm/a accounts for 25% of the present-day shortening rate across the piedmont. Earthquake scaling relationships applied to the Houchiali fault predict Mw 6 earthquakes that would occur a lot more frequently than indicated from historical earthquake catalogs. Hence, the aseismic slip behavior observed from geodetic measurements since two decades is a representative behavior of the fault at least at the scale of a few centuries. Our results bear out the dominance of pure-shear folding at the front of fold-and-thrust belts and support horizontal compaction as a significant shortening mechanism. In contrast, the back thrust wedge structure and the aseismic slip are peculiar characteristics that likely arise from the combination of low friction and high-pore pressure related to the thick mudstone formation hosting the wedge and of high syntectonic sedimentation rates
    corecore