47 research outputs found

    Intertwinings for general β Laguerre and Jacobi processes

    Get PDF
    We show that, for β≥1, the semigroups of β-Laguerre and β-Jacobi processes of different dimensions are intertwined in analogy to a similar result for β-Dyson Brownian motion recently obtained in Ramanan and Shkolnikov (Intertwinings of β-Dyson Brownian motions of different dimensions, 2016. arXiv:1608.01597). These intertwining relations generalize to arbitrary β≥1 the ones obtained for β=2 in Assiotis et al. (Interlacing diffusions, 2016. arXiv:1607.07182) between h-transformed Karlin–McGregor semigroups. Moreover, they form the key step toward constructing a multilevel process in a Gelfand–Tsetlin pattern leaving certain Gibbs measures invariant. Finally, as a by-product, we obtain a relation between general β-Jacobi ensembles of different dimensions

    High-throughput RNA interference screening using pooled shRNA libraries and next generation sequencing

    Get PDF
    RNA interference (RNAi) screening is a state-of-the-art technology that enables the dissection of biological processes and disease-related phenotypes. The commercial availability of genome-wide, short hairpin RNA (shRNA) libraries has fueled interest in this area but the generation and analysis of these complex data remain a challenge. Here, we describe complete experimental protocols and novel open source computational methodologies, shALIGN and shRNAseq, that allow RNAi screens to be rapidly deconvoluted using next generation sequencing. Our computational pipeline offers efficient screen analysis and the flexibility and scalability to quickly incorporate future developments in shRNA library technology

    Genetic and immune landscape evolution in MMR-deficient colorectal cancer.

    Get PDF
    Mismatch repair-deficient (MMRd) colorectal cancers (CRCs) have high mutation burdens, which make these tumours immunogenic and many respond to immune checkpoint inhibitors. The MMRd hypermutator phenotype may also promote intratumour heterogeneity (ITH) and cancer evolution. We applied multiregion sequencing and CD8 and programmed death ligand 1 (PD-L1) immunostaining to systematically investigate ITH and how genetic and immune landscapes coevolve. All cases had high truncal mutation burdens. Despite pervasive ITH, driver aberrations showed a clear hierarchy. Those in WNT/β-catenin, mitogen-activated protein kinase, and TGF-β receptor family genes were almost always truncal. Immune evasion (IE) drivers, such as inactivation of genes involved in antigen presentation or IFN-γ signalling, were predominantly subclonal and showed parallel evolution. These IE drivers have been implicated in immune checkpoint inhibitor resistance or sensitivity. Clonality assessments are therefore important for the development of predictive immunotherapy biomarkers in MMRd CRCs. Phylogenetic analysis identified three distinct patterns of IE driver evolution: pan-tumour evolution, subclonal evolution, and evolutionary stasis. These, but neither mutation burdens nor heterogeneity metrics, significantly correlated with T-cell densities, which were used as a surrogate marker of tumour immunogenicity. Furthermore, this revealed that genetic and T-cell infiltrates coevolve in MMRd CRCs. Low T-cell densities in the subgroup without any known IE drivers may indicate an, as yet unknown, IE mechanism. PD-L1 was expressed in the tumour microenvironment in most samples and correlated with T-cell densities. However, PD-L1 expression in cancer cells was independent of T-cell densities but strongly associated with loss of the intestinal homeobox transcription factor CDX2. This explains infrequent PD-L1 expression by cancer cells and may contribute to a higher recurrence risk of MMRd CRCs with impaired CDX2 expression. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland

    Comprehensive Genomic Analysis of a BRCA2 Deficient Human Pancreatic Cancer

    Get PDF
    Capan-1 is a well-characterised BRCA2-deficient human cell line isolated from a liver metastasis of a pancreatic adenocarcinoma. Here we report a genome-wide assessment of structural variations and high-depth exome characterization of single nucleotide variants and small insertion/deletions in Capan-1. To identify potential somatic and tumour-associated variations in the absence of a matched-normal cell line, we devised a novel method based on the analysis of HapMap samples. We demonstrate that Capan-1 has one of the most rearranged genomes sequenced to date. Furthermore, small insertions and deletions are detected more frequently in the context of short sequence repeats than in other genomes. We also identify a number of novel mutations that may represent genetic changes that have contributed to tumour progression. These data provide insight into the genomic effects of loss of BRCA2 function

    Suppression of interferon gene expression overcomes resistance to MEK inhibition in KRAS-mutant colorectal cancer.

    Get PDF
    Despite showing clinical activity in BRAF-mutant melanoma, the MEK inhibitor (MEKi) trametinib has failed to show clinical benefit in KRAS-mutant colorectal cancer. To identify mechanisms of resistance to MEKi, we employed a pharmacogenomic analysis of MEKi-sensitive versus MEKi-resistant colorectal cancer cell lines. Strikingly, interferon- and inflammatory-related gene sets were enriched in cell lines exhibiting intrinsic and acquired resistance to MEK inhibition. The bromodomain inhibitor JQ1 suppressed interferon-stimulated gene (ISG) expression and in combination with MEK inhibitors displayed synergistic effects and induced apoptosis in MEKi-resistant colorectal cancer cell lines. ISG expression was confirmed in patient-derived organoid models, which displayed resistance to trametinib and were resensitized by JQ1 co-treatment. In in vivo models of colorectal cancer, combination treatment significantly suppressed tumor growth. Our findings provide a novel explanation for the limited response to MEK inhibitors in KRAS-mutant colorectal cancer, known for its inflammatory nature. Moreover, the high expression of ISGs was associated with significantly reduced survival of colorectal cancer patients. Excitingly, we have identified novel therapeutic opportunities to overcome intrinsic and acquired resistance to MEK inhibition in colorectal cancer

    Identification of 19 new risk loci and potential regulatory mechanisms influencing susceptibility to testicular germ cell tumor

    Get PDF
    Genome-wide association studies (GWAS) have transformed understanding of susceptibility to testicular germ cell tumors (TGCTs), but much of the heritability remains unexplained. Here we report a new GWAS, a meta-analysis with previous GWAS and a replication series, totaling 7,319 TGCT cases and 23,082 controls. We identify 19 new TGCT risk loci, roughly doubling the number of known TGCT risk loci to 44. By performing in situ Hi-C in TGCT cells, we provide evidence for a network of physical interactions among all 44 TGCT risk SNPs and candidate causal genes. Our findings implicate widespread disruption of developmental transcriptional regulators as a basis of TGCT susceptibility, consistent with failed primordial germ cell differentiation as an initiating step in oncogenesis. Defective microtubule assembly and dysregulation of KIT-MAPK signaling also feature as recurrently disrupted pathways. Our findings support a polygenic model of risk and provide insight into the biological basis of TGCT.We acknowledge National Health Service funding to the National Institute for Health Research Biomedical Research Centre. Genotyping of the OncoArray was funded by the US National Institutes of Health (NIH) (U19 CA 148537 for Elucidating Loci Involved in Prostate cancer Susceptibility (ELLIPSE) project and X01HG007492 to the Center for Inherited Disease Research (CIDR) under contract number HHSN268201200008I). Additional analytical support was provided by NIH NCI U01 CA188392. The PRACTICAL consortium was supported by Cancer Research UK Grants C5047/A7357, C1287/A10118, C1287/A16563, C5047/A3354, C5047/A10692 and C16913/A6135; the European Commission’s Seventh Framework Programme grant agreement 223175 (HEALTH-F2-2009-223175) (D.F.E., R.E. and Z.K.-J.); and the NIH Cancer Post-Cancer GWAS initiative grant 1 U19 CA 148537-01 (the GAME-ON initiative). We thank the following for funding support: the Institute of Cancer Research and the Everyman Campaign, the Prostate Cancer Research Foundation, Prostate Research Campaign UK (now Prostate Action), the Orchid Cancer Appeal, the National Cancer Research Network UK and the National Cancer Research Institute (NCRI) UK. We are grateful for NIHR funding to the Biomedical Research Centre at the Institute of Cancer Research and the Royal Marsden NHS Foundation Trust. We acknowledge funding from the Swedish Cancer Society (CAN2011/484 and CAN2012/823), the Norwegian Cancer Society (grants 418975-71081-PR-2006-0387 and PK01-2007- 0375) and the Nordic Cancer Union (grant S-12/07). This study was supported by the Movember Foundation and the Institute of Cancer Research. K.L. is supported by a PhD fellowship from Cancer Research UK. R.S.H. and P.B. are supported by Cancer Research UK (C1298/A8362 Bobby Moore Fund for Cancer Research UK)
    corecore