32 research outputs found

    On the Representability of Complete Genomes by Multiple Competing Finite-Context (Markov) Models

    Get PDF
    A finite-context (Markov) model of order yields the probability distribution of the next symbol in a sequence of symbols, given the recent past up to depth . Markov modeling has long been applied to DNA sequences, for example to find gene-coding regions. With the first studies came the discovery that DNA sequences are non-stationary: distinct regions require distinct model orders. Since then, Markov and hidden Markov models have been extensively used to describe the gene structure of prokaryotes and eukaryotes. However, to our knowledge, a comprehensive study about the potential of Markov models to describe complete genomes is still lacking. We address this gap in this paper. Our approach relies on (i) multiple competing Markov models of different orders (ii) careful programming techniques that allow orders as large as sixteen (iii) adequate inverted repeat handling (iv) probability estimates suited to the wide range of context depths used. To measure how well a model fits the data at a particular position in the sequence we use the negative logarithm of the probability estimate at that position. The measure yields information profiles of the sequence, which are of independent interest. The average over the entire sequence, which amounts to the average number of bits per base needed to describe the sequence, is used as a global performance measure. Our main conclusion is that, from the probabilistic or information theoretic point of view and according to this performance measure, multiple competing Markov models explain entire genomes almost as well or even better than state-of-the-art DNA compression methods, such as XM, which rely on very different statistical models. This is surprising, because Markov models are local (short-range), contrasting with the statistical models underlying other methods, where the extensive data repetitions in DNA sequences is explored, and therefore have a non-local character

    Association between Age and the 7 Repeat Allele of the Dopamine D4 Receptor Gene

    Get PDF
    Longevity is in part (25%) inherited, and genetic studies aim to uncover allelic variants that play an important role in prolonging life span. Results to date confirm only a few gene variants associated with longevity, while others show inconsistent results. However, GWAS studies concentrate on single nucleotide polymorphisms, and there are only a handful of studies investigating variable number of tandem repeat variations related to longevity. Recently, Grady and colleagues (2013) reported a remarkable (66%) accumulation of those carrying the 7 repeat allele of the dopamine D4 receptor gene in a large population of 90-109 years old Californian centenarians, as compared to an ancestry-matched young population. In the present study we demonstrate the same association using continuous age groups in an 18-97 years old Caucasian sample (N = 1801, p = 0.007). We found a continuous pattern of increase from 18-75, however frequency of allele 7 carriers decreased in our oldest age groups. Possible role of gene-environment interaction effects driven by historical events are discussed. In accordance with previous findings, we observed association preferentially in females (p = 0.003). Our results underlie the importance of investigating non-disease related genetic variants as inherited components of longevity, and confirm, that the 7-repeat allele of the dopamine D4 receptor gene is a longevity enabling genetic factor, accumulating in the elderly female population

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure
    corecore