11,401 research outputs found

    Structure Learning in Motor Control:A Deep Reinforcement Learning Model

    Full text link
    Motor adaptation displays a structure-learning effect: adaptation to a new perturbation occurs more quickly when the subject has prior exposure to perturbations with related structure. Although this `learning-to-learn' effect is well documented, its underlying computational mechanisms are poorly understood. We present a new model of motor structure learning, approaching it from the point of view of deep reinforcement learning. Previous work outside of motor control has shown how recurrent neural networks can account for learning-to-learn effects. We leverage this insight to address motor learning, by importing it into the setting of model-based reinforcement learning. We apply the resulting processing architecture to empirical findings from a landmark study of structure learning in target-directed reaching (Braun et al., 2009), and discuss its implications for a wider range of learning-to-learn phenomena.Comment: 39th Annual Meeting of the Cognitive Science Society, to appea

    Could light harvesting complexes exhibit non-classical effects at room temperature?

    Get PDF
    Mounting experimental and theoretical evidence suggests that coherent quantum effects play a role in the efficient transfer of an excitation from a chlorosome antenna to a reaction center in the Fenna-Matthews-Olson protein complex. However, it is conceivable that a satisfying alternate interpretation of the results is possible in terms of a classical theory. To address this possibility, we consider a class of classical theories satisfying the minimal postulates of macrorealism and frame Leggett-Garg-type tests that could rule them out. Our numerical simulations indicate that even in the presence of decoherence, several tests could exhibit the required violations of the Leggett-Garg inequality. Remarkably, some violations persist even at room temperature for our decoherence model.Comment: 10 pages, 4 figures, 2 tables, submitted to the Proceedings of the Royal Society

    Entanglement Entropy of Gapped Phases and Topological Order in Three dimensions

    Full text link
    We discuss entanglement entropy of gapped ground states in different dimensions, obtained on partitioning space into two regions. For trivial phases without topological order, we argue that the entanglement entropy may be obtained by integrating an `entropy density' over the partition boundary that admits a gradient expansion in the curvature of the boundary. This constrains the expansion of entanglement entropy as a function of system size, and points to an even-odd dependence on dimensionality. For example, in contrast to the familiar result in two dimensions, a size independent constant contribution to the entanglement entropy can appear for trivial phases in any odd spatial dimension. We then discuss phases with topological entanglement entropy (TEE) that cannot be obtained by adding local contributions. We find that in three dimensions there is just one type of TEE, as in two dimensions, that depends linearly on the number of connected components of the boundary (the `zeroth Betti number'). In D > 3 dimensions, new types of TEE appear which depend on the higher Betti numbers of the boundary manifold. We construct generalized toric code models that exhibit these TEEs and discuss ways to extract TEE in D >=3.Comment: 16.5 pages, 10 figure

    Nonlinear coupling of nano mechanical resonators to Josephson quantum circuits

    Get PDF
    We propose a technique to couple the position operator of a nano mechanical resonator to a SQUID device by modulating its magnetic flux bias. By tuning the magnetic field properly, either linear or quadratic couplings can be realized, with a discretely adjustable coupling strength. This provides a way to realize coherent nonlinear effects in a nano mechanical resonator by coupling it to a Josephson quantum circuit. As an example, we show how squeezing of the nano mechanical resonator state can be realized with this technique. We also propose a simple method to measure the uncertainty in the position of the nano mechanical resonator without quantum state tomography

    Vortex Molecules in Spinor Condensates

    Get PDF
    Condensates of atoms with spins can have vortices of several types; these are related to the symmetry group of the atoms' ground state. We discuss how, when a condensate is placed in a small magnetic field that breaks the spin symmetry, these vortices may form bound states. Using symmetry classification of vortex-charge and rough estimates for vortex interactions, one can show that some configurations that are stable at zero temperature can decay at finite temperatures by crossing over energy barriers. Our focus is cyclic spin 2 condensates, which have tetrahedral symmetry.Comment: 28 pages, 12 figure

    Topological phases in gapped edges of fractionalized systems

    Full text link
    Recently, it has been proposed that exotic one-dimensional phases can be realized by gapping out the edge states of a fractional topological insulator. The low-energy edge degrees of freedom are described by a chain of coupled parafermions. We introduce a classification scheme for the phases that can occur in parafermionic chains. We find that the parafermions support both topological symmetry fractionalized phases as well as phases in which the parafermions condense. In the presence of additional symmetries, the phases form a non-Abelian group. As a concrete example of the classification, we consider the effective edge model for a ν=1/3\nu= 1/3 fractional topological insulator for which we calculate the entanglement spectra numerically and show that all possible predicted phases can be realized.Comment: 11 pages, 7 figures, final versio

    Beyond Band Insulators: Topology of Semi-metals and Interacting Phases

    Full text link
    The theory of topological insulators and superconductors has mostly focused on non-interacting and gapped systems. This review article discusses topological phases that are either gapless or interacting. We discuss recent progress in identifying gapless systems with stable topological properties (such as novel surface states), using Weyl semimetals as an illustration. We then review recent progress in describing topological phases of interacting gapped systems. We explain how new types of edge states can be stabilized by interactions and symmetry, even though the bulk has only conventional excitations and no topological order of the kind associated with Fractional Quantum Hall states.Comment: Review Article on new classes of topological phase

    Exchange-correlation potentials for inhomogeneous electron systems in two dimensions from exact diagonalization: comparison with the local-spin-density approximation

    Full text link
    We consider electronic exchange and correlation effects in density-functional calculations of two-dimensional systems. Starting from wave function calculations of total energies and electron densities of inhomogeneous model systems, we derive corresponding exchange-correlation potentials and energies. We compare these with predictions of the local-spin-density approximation and discuss its accuracy. Our data will be useful as reference data in testing, comparing and parametrizing exchange and correlation functionals for two-dimensional electronic systems.Comment: Submitted to Physical Review B on January 3, 2012. Second revised version submitted on April 13, 201
    corecore