511 research outputs found

    A multi-sensor data-driven methodology for all-sky passive microwave inundation retrieval

    Get PDF
    We present a multi-sensor Bayesian passive microwave retrieval algorithm for flood inundation mapping at high spatial and temporal resolutions. The algorithm takes advantage of observations from multiple sensors in optical, short-infrared, and microwave bands, thereby allowing for detection and mapping of the sub-pixel fraction of inundated areas under almost all-sky conditions. The method relies on a nearest-neighbor search and a modern sparsity-promoting inversion method that make use of an a priori dataset in the form of two joint dictionaries. These dictionaries contain almost overlapping observations by the Special Sensor Microwave Imager and Sounder (SSMIS) on board the Defense Meteorological Satellite Program (DMSP) F17 satellite and the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Aqua and Terra satellites. Evaluation of the retrieval algorithm over the Mekong Delta shows that it is capable of capturing to a good degree the inundation diurnal variability due to localized convective precipitation. At longer timescales, the results demonstrate consistency with the ground-based water level observations, denoting that the method is properly capturing inundation seasonal patterns in response to regional monsoonal rain. The calculated Euclidean distance, rank-correlation, and also copula quantile analysis demonstrate a good agreement between the outputs of the algorithm and the observed water levels at monthly and daily timescales. The current inundation products are at a resolution of 12.5 km and taken twice per day, but a higher resolution (order of 5 km and every 3 h) can be achieved using the same algorithm with the dictionary populated by the Global Precipitation Mission (GPM) Microwave Imager (GMI) products.Comment: 12 pages, 9 Figure

    Self-force on a scalar charge in radial infall from rest using the Hadamard-WKB expansion

    Full text link
    We present an analytic method based on the Hadamard-WKB expansion to calculate the self-force for a particle with scalar charge that undergoes radial infall in a Schwarzschild spacetime after being held at rest until a time t = 0. Our result is valid in the case of short duration from the start. It is possible to use the Hadamard-WKB expansion in this case because the value of the integral of the retarded Green's function over the particle's entire past trajectory can be expressed in terms of two integrals over the time period that the particle has been falling. This analytic result is expected to be useful as a check for numerical prescriptions including those involving mode sum regularization and for any other analytical approximations to self-force calculations.Comment: 22 pages, 2 figures, Physical Review D version along with the corrections given in the erratu

    Effect of Freestream Turbulence on Roughness-induced Crossflow Instability

    Get PDF
    AbstractThe effect of freestream turbulence on generation of crossflow disturbances over swept wings is investigated through direct nu- merical simulations. The set up follows the experiments performed by Downs et al. (2012). In these experiments the authors use ASU(67)-0315 wing geometry which promotes growth of crossflow disturbances. Distributed roughness elements are locally placed near the leading edge with a given spanwise wavenumber to excite the corresponding stationary crossflow vortices. In present study, we partially reproduce the isotropic homogenous freestream turbulence through direct numerical simulations using freestream spectrum data from the experiments. The generated freestream fields are then applied as the inflow boundary condition for direct numerical simulation of the wing. The distributed roughness elements are modelled through wing surface deformation and placed near the leading edge to trigger the stationary crossflow disturbances. The effects of the generated freestream turbulence on the initial amplitudes and growth of the boundary layer perturbations are then studied

    A novel approach for water quality management in water distribution systems by multi-objective booster chlorination

    Get PDF
    Copyright © 2012 International Journal of Civil EngineeringCompared to conventional chlorination methods which apply chlorine at water treatment plant, booster chlorination has almost solved the problems of high dosages of chlorine residuals near water sources and lack of chlorine residuals in the remote points of a water distribution system (WDS). However, control of trihalomethane (THM) formation as a potentially carcinogenic disinfection by-product (DBP) within a WDS has still remained as a water quality problem. This paper presents a two-phase approach of multi-objective booster disinfection in which both chlorine residuals and THM formation are concurrently optimized in a WDS. In the first phase, a booster disinfection system is formulated as a multi-objective optimization problem in which the location of booster stations is determined. The objectives are defined as to maximize the volumetric discharge with appropriate levels of disinfectant residuals throughout all demand nodes and to minimize the total mass of disinfectant applied with a specified number of booster stations. The most frequently selected locations for installing booster disinfection stations are selected for the second phase, in which another two-objective optimization problem is defined. The objectives in the second problem are to minimize the volumetric discharge avoiding THM maximum levels and to maximize the volumetric discharge with standard levels of disinfectant residuals. For each point on the resulted trade-off curve between the water quality objectives optimal scheduling of chlorination injected at each booster station is obtained. Both optimization problems used NSGA-II algorithm as a multi-objective genetic algorithm, coupled with EPANET as a hydraulic simulation model. The optimization problems are tested for different numbers of booster chlorination stations in a real case WDS. As a result, this type of multi-objective optimization model can explicitly give the decision makers the optimal location and scheduling of booster disinfection systems with respect to the trade-off between maximum safe drinking water with allowable chlorine residual levels and minimum adverse DBP levels

    Spatial Scale Gap Filling Using an Unmanned Aerial System: A Statistical Downscaling Method for Applications in Precision Agriculture

    Get PDF
    Applications of satellite-borne observations in precision agriculture (PA) are often limited due to the coarse spatial resolution of satellite imagery. This paper uses high-resolution airborne observations to increase the spatial resolution of satellite data for related applications in PA. A new variational downscaling scheme is presented that uses coincident aerial imagery products from “AggieAir”, an unmanned aerial system, to increase the spatial resolution of Landsat satellite data. This approach is primarily tested for downscaling individual band Landsat images that can be used to derive normalized difference vegetation index (NDVI) and surface soil moisture (SSM). Quantitative and qualitative results demonstrate promising capabilities of the downscaling approach enabling effective increase of the spatial resolution of Landsat imageries by orders of 2 to 4. Specifically, the downscaling scheme retrieved the missing high-resolution feature of the imageries and reduced the root mean squared error by 15, 11, and 10 percent in visual, near infrared, and thermal infrared bands, respectively. This metric is reduced by 9% in the derived NDVI and remains negligibly for the soil moisture products

    Dynamical Precipitation Downscaling for Hydrologic Applications Using WRF 4D-Var Data Assimilation: Implications for GPM Era

    Get PDF
    The objective of this study is to develop a framework for dynamically downscaling spaceborne precipitation products using the Weather Research and Forecasting (WRF) Model with four-dimensional variational data assimilation (4D-Var). Numerical experiments have been conducted to 1) understand the sensitivity of precipitation downscaling through point-scale precipitation data assimilation and 2) investigate the impact of seasonality and associated changes in precipitation-generating mechanisms on the quality of spatiotemporal downscaling of precipitation. The point-scale experiment suggests that assimilating precipitation can significantly affect the precipitation analysis, forecast, and downscaling. Because of occasional overestimation or underestimation of small-scale summertime precipitation extremes, the numerical experiments presented here demonstrate that the wintertime assimilation produces downscaled precipitation estimates that are in closer agreement with the reference National Centers for Environmental Prediction stage IV dataset than similar summertime experiments. This study concludes that the WRF 4D-Var system is able to effectively downscale a 6-h precipitation product with a spatial resolution of 20 km to hourly precipitation with a spatial resolution of less than 10 km in grid spacing—relevant to finescale hydrologic applications for the era of the Global Precipitation Measurement mission
    • …
    corecore