20 research outputs found
Distribution of the DAZ gene transcripts in human testis.
Involvement of variety of genes, especially located on Y chromosome, is critical for the regulation of spermatogenesis. In particular, fertility candidate genes such as deleted in azoospermia (DAZ) are believed to have important function in sperm production, since DAZ is frequently deleted in azoospermic and severy oligozoospermic men. The role of the DAZ gene is supported by its exclusive expression in the testis and by its deletion in about 10% of azoospermic and severely oligozoospermic patients. The distribution of DAZ transcripts in seminiferous epithelium of human testis is reported in the present study. The use of Adobe Photoshop and Scion Image softwares allowed for semi-quantitative analysis of in situ RT-PCR (ISRT-PCR) results. The intensity of ISRT-PCR product's fluorescence was different within individual seminiferous tubules. It was clearly shown by using the pseudocolour scale and transforming the intensity of the fluorescence into levels of greyscale images. The more intense fluorescence characterised single spermatogonia and those organized in small groups inside separate tubules. The most intense accumulation of DAZ mRNA was observed in spermatogonia
A texture-based model of mineral liberation
The ability to optimise a concentrator from mill feed to final products requires a process simulator that integrates comminution, classification and separation stages. A key part of any such integrated process simulator is the inclusion of a model of mineral liberation in comminution to predict the particle composition distribution of the comminution products. This need was recognised by Gaudin (1939) who proposed a model of liberation based on the cubic fracture of a mineral texture composed of cubic grains of two minerals.This paper describes the development of a texture-based model of mineral liberation that builds on the method proposed by Gaudin. The approach described here, termed the JK-Gaudin Random Liberation model (JK-GRLM) uses as its basis the measured, volumetric mineral texture data that can be quantified for a given ore using X-ray micro-tomography. The textural data required as inputs for the JK-GRLM include the mineral grain size distribution. While the Gaudin model (in common with other existing liberation models) is a two-mineral (or two-phase) system, the JK-GRLM extends the approach to multimineral systems of up to 15 individual minerals, making it more widely applicable.An example of the application of the JK-GRLM to a base metal sulphide ore is provided. In the example the JK-GRLM is used to simulate the breakage of the measured ore texture and the particle composition distributions of the simulated progeny particles are compared to the measured particle composition distributions of ore that has been physically broken.The ability to calibrate this mineral liberation model with measured ore texture will allow it to be applied in greenfield situations where geometallurgical programs measure texture and in brownfield applications as a key part of integrated process simulations. The development of this model enhances our ability to simulate mineral processing operations as an integrated system
Reduction of human chorionic gonadotropin beta subunit expression by modified U1 snRNA caused apoptosis in cervical cancer cells
BACKGROUND:
Secretion of human chorionic gonadotropin, especially its beta subunit by malignant trophoblastic tumors and varieties of tumors of different origin is now well documented; however the role of hCG in tumorogenesis is still unknown.
RESULTS:
This study documents the molecular presence of human chorionic gonadotropin beta subunit in uterine cervix cancer tissues and investigates a novel technique to reduce hCGbeta levels based on expression of a modified U1 snRNA as a method to study the hormone's role in biology of human cervical cancer cells cultured in vitro. The property of U1 snRNA to block the accumulation of specific RNA transcript when it binds to its donor sequence within the 3' terminal exon was used. The first 10 nucleotides of the human U1 snRNA gene, which normally binds to the 5'ss in pre-mRNA were replaced by a sequence complementary to a 10-nt segment in the terminal exon of the hCGbeta mRNA. Three different 5' end-mutated U1 snRNA expression plasmids were tested, each targeting a different sequence in the hCGbeta mRNA, and we found each one blocked the expression of hCGbeta in HeLa cells, a cervix carcinoma cell line, as shown by immunohistochemistry and qRT-PCR. Reduction of hCGbeta levels resulted in a significantly increased apoptosis rate with almost 90% of cells transfected with modified anti-hCGbeta U1 snRNAs showing morphological changes characteristic of the apoptotic process.
CONCLUSION:
These data suggest that human chorionic gonadotropin beta subunit may act as a tumor growth-stimulating factor
Table1_Ciliary phenotyping in renal epithelial cells in a cranioectodermal dysplasia patient with WDR35 variants.DOCX
Background: Cranioectodermal dysplasia (CED) is a skeletal autosomal recessive ciliopathy. The characteristic clinical features of CED are facial dysmorphisms, short limbs, narrow thorax, brachydactyly, ectodermal abnormalities, and renal insufficiency. Thus far, variants in six genes are known to be associated with this disorder: WDR35, IFT122, IFT140, IFT144, IFT52, and IFT43.Objective: The goal of this study was to perform cilium phenotyping in human urine-derived renal epithelial cells (hURECs) from a CED patient diagnosed with second-stage chronic kidney disease (CKD) and three unrelated and unaffected pediatric controls.Methods: Genetic analysis by WDR35 screening was performed in the affected individual. Cilium frequency and morphology, including cilium length, height, and width, were evaluated by immunofluorescence (IF) experiments in hURECs using two markers visualizing the ciliary axoneme (Acet-Tub and ARL13B) and the base of the cilium (PCNT). The IF results were analyzed using a confocal microscope and IMARIS software.Results:WDR35 analysis revealed the presence of a known nonsense p. (Leu641*) variant and a novel missense variant p. (Ala1027Thr). Moreover, comparative genomic hybridization analysis showed that the patient carries a microdeletion on chromosome 7q31.1. Ciliary phenotyping performed on hURECs showed morphological differences in the patient’s cilia as compared to the three controls. The cilia of the CED patient were significantly wider and longer.Conclusion: The obtained results suggest that CED-related second-stage CKD might be associated with cilia abnormalities, as identified in renal epithelial cells from a CED patient harboring variants in WDR35. This study points out the added value of hURECs in functional testing for ciliopathies.</p
DataSheet1_Ciliary phenotyping in renal epithelial cells in a cranioectodermal dysplasia patient with WDR35 variants.PDF
Background: Cranioectodermal dysplasia (CED) is a skeletal autosomal recessive ciliopathy. The characteristic clinical features of CED are facial dysmorphisms, short limbs, narrow thorax, brachydactyly, ectodermal abnormalities, and renal insufficiency. Thus far, variants in six genes are known to be associated with this disorder: WDR35, IFT122, IFT140, IFT144, IFT52, and IFT43.Objective: The goal of this study was to perform cilium phenotyping in human urine-derived renal epithelial cells (hURECs) from a CED patient diagnosed with second-stage chronic kidney disease (CKD) and three unrelated and unaffected pediatric controls.Methods: Genetic analysis by WDR35 screening was performed in the affected individual. Cilium frequency and morphology, including cilium length, height, and width, were evaluated by immunofluorescence (IF) experiments in hURECs using two markers visualizing the ciliary axoneme (Acet-Tub and ARL13B) and the base of the cilium (PCNT). The IF results were analyzed using a confocal microscope and IMARIS software.Results:WDR35 analysis revealed the presence of a known nonsense p. (Leu641*) variant and a novel missense variant p. (Ala1027Thr). Moreover, comparative genomic hybridization analysis showed that the patient carries a microdeletion on chromosome 7q31.1. Ciliary phenotyping performed on hURECs showed morphological differences in the patient’s cilia as compared to the three controls. The cilia of the CED patient were significantly wider and longer.Conclusion: The obtained results suggest that CED-related second-stage CKD might be associated with cilia abnormalities, as identified in renal epithelial cells from a CED patient harboring variants in WDR35. This study points out the added value of hURECs in functional testing for ciliopathies.</p