5,553 research outputs found
Further Correlations of Cell Metabolism and Resistance to Tuberculosis: Studies on Mononuclear Peritoneal Exudate Cells from Mice and Guinea Pigs
The metabolic activity of mononuclear exudate cells from mice of different strains, and from the guinea pig, have been compared to the rabbit with the aim of relating metabolic activity of these cells to resistance of these species to tuberculosis. The presence of mast cells in the peritoneal exudates of mice was thought to interfere with the dehydrogenation of certain substrates due to the release of histamine. Some experimental evidence presented by the authors seems to support this thesis
PKSB1740-517: An ALMA view of the cold gas feeding a distant interacting young radio galaxy
Cold neutral gas is a key ingredient for growing the stellar and central
black hole mass in galaxies throughout cosmic history. We have used the Atacama
Large Millimetre Array (ALMA) to detect a rare example of redshifted
CO(2-1) absorption in PKS B1740-517, a young (
yr) and luminous ( erg s ) radio
galaxy at that is undergoing a tidal interaction with at least one
lower-mass companion. The coincident HI 21-cm and molecular absorption have
very similar line profiles and reveal a reservoir of cold gas ( M), likely distributed in a disc or ring within
a few kiloparsecs of the nucleus. A separate HI component is kinematically
distinct and has a very narrow line width ( km
s), consistent with a single diffuse cloud of cold (
K) atomic gas. The CO(2-1) absorption is not associated with this
component, which suggests that the cloud is either much smaller than 100 pc
along our sight-line and/or located in low-metallicity gas that was possibly
tidally stripped from the companion. We argue that the gas reservoir in PKS
B1740-517 may have accreted onto the host galaxy 50 Myr before the young
radio AGN was triggered, but has only recently reached the nucleus. This is
consistent with the paradigm that powerful luminous radio galaxies are
triggered by minor mergers and interactions with low-mass satellites and
represent a brief, possibly recurrent, active phase in the life cycle of
massive early type galaxies.Comment: 15 pages, 7 figures, accepted for publication in MNRA
Radiative association and inverse predissociation of oxygen atoms
The formation of \mbox{O}_2 by radiative association and by inverse
predissociation of ground state oxygen atoms is studied using
quantum-mechanical methods. Cross sections, emission spectra, and rate
coefficients are presented and compared with prior experimental and theoretical
results. At temperatures below 1000~K radiative association occurs by approach
along the state of \mbox{O}_2 and above 1000~K inverse
predissociation through the \mbox{B}\,{}^3\Sigma_u^- state is the dominant
mechanism. This conclusion is supported by a quantitative comparison between
the calculations and data obtained from hot oxygen plasma spectroscopy.Comment: submitted to Phys. Rev. A (Sept. 7., 1994), 19 pages, 4 figures,
latex (revtex3.0 and epsf.sty
Letter from E. M. Allison Jr.
Letter concerning an address at the commencement exercises for Utah Agricultural College
A Leptin-regulated Circuit Controls Glucose Mobilization During Noxious Stimuli
Adipocytes secrete the hormone leptin to signal the sufficiency of energy stores. Reductions in circulating leptin concentrations reflect a negative energy balance, which augments sympathetic nervous system (SNS) activation in response to metabolically demanding emergencies. This process ensures adequate glucose mobilization despite low energy stores. We report that leptin receptor–expressing neurons (LepRb neurons) in the periaqueductal gray (PAG), the largest population of LepRb neurons in the brain stem, mediate this process. Application of noxious stimuli, which often signal the need to mobilize glucose to support an appropriate response, activated PAG LepRb neurons, which project to and activate parabrachial nucleus (PBN) neurons that control SNS activation and glucose mobilization. Furthermore, activating PAG LepRb neurons increased SNS activity and blood glucose concentrations, while ablating LepRb in PAG neurons augmented glucose mobilization in response to noxious stimuli. Thus, decreased leptin action on PAG LepRb neurons augments the autonomic response to noxious stimuli, ensuring sufficient glucose mobilization during periods of acute demand in the face of diminished energy stores
Patterns of analgesic use, pain and self-efficacy: a cross-sectional study of patients attending a hospital rheumatology clinic
Background: Many people attending rheumatology clinics use analgesics and non-steroidal anti-inflammatories for persistent musculoskeletal pain. Guidelines for pain management recommend regular and pre-emptive use of analgesics to reduce the impact of pain. Clinical experience indicates that analgesics are often not used in this way. Studies exploring use of analgesics in arthritis have historically measured adherence to such medication. Here we examine patterns of analgesic use and their relationships to pain, self-efficacy and demographic factors.
Methods: Consecutive patients were approached in a hospital rheumatology out-patient clinic. Pattern of analgesic use was assessed by response to statements such as 'I always take my tablets every day.' Pain and self-efficacy (SE) were measured using the Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) and Arthritis Self-Efficacy Scale (ASES). Influence of factors on pain level and regularity of analgesic use were investigated using linear regression. Differences in pain between those agreeing and disagreeing with statements regarding analgesic use were assessed using t-tests.
Results: 218 patients (85% of attendees) completed the study. Six (2.8%) patients reported no current pain, 26 (12.3%) slight, 100 (47.4%) moderate, 62 (29.4%) severe and 17 (8.1%) extreme pain. In multiple linear regression self efficacy and regularity of analgesic use were significant (p < 0.01) with lower self efficacy and more regular use of analgesics associated with more pain.
Low SE was associated with greater pain: 40 (41.7%) people with low SE reported severe pain versus 22 (18.3%) people with high SE, p < 0.001. Patients in greater pain were significantly more likely to take analgesics regularly; 13 (77%) of those in extreme pain reported always taking their analgesics every day, versus 9 (35%) in slight pain. Many patients, including 46% of those in severe pain, adjusted analgesic use to current pain level. In simple linear regression, pain was the only variable significantly associated with regularity of analgesic use: higher levels of pain corresponded to more regular analgesic use (p = 0.003).
Conclusion: Our study confirms that there is a strong inverse relationship between self-efficacy and pain severity. Analgesics are often used irregularly by people with arthritis, including some reporting severe pain
Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance
The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output
Specific Subpopulations of Hypothalamic Leptin Receptor-Expressing Neurons Mediate the Effects of Early Developmental Leptin Receptor Deletion on Energy Balance
ACKNOWLEDGEMENTS We thank MedImmune, Inc. and James Trevaskis, PhD and Christopher Rhodes, PhD for the gift of leptin. We thank members of the Myers and Olson labs for helpful discussions. Research support was provided by the Michigan Diabetes Research Center (NIH P3 0 DK020572, including the Molecular Genetics, Animal Phenotyping, and Clinical Cores), the American Diabetes Association (MGM), the Marilyn H. Vincent Foundation (MGM), the NIH (MGM: D K05673 1; ACR:DK071212; MBA: DK097861), the BBSRC (LKH: BB/NO17838/1) and WellcomeTrust (LKH: 098012).Peer reviewedPublisher PD
Measurement of the hadronic photon structure function F_{2}^{γ} at LEP2
The hadronic structure function of the photon F_{2}^{γ} (x, Q²) is measured as a function of Bjorken x and of the photon virtuality Q² using deep-inelastic scattering data taken by the OPAL detector at LEP at e⁺e⁻ centre-of-mass energies from 183 to 209 GeV. Previous OPAL measurements of the x dependence of F_{2}^{γ} are extended to an average Q² of 〈Q²〉=780 GeV² using data in the kinematic range 0.15<x<0.98. The Q² evolution of F_{2}^{γ} is studied for 12.1<〈Q²〉<780 GeV² using three ranges of x. As predicted by QCD, the data show positive scaling violations in F_{2}^{γ} with F_{2}^{γ} (Q²)/α = (0.08±0.02⁺⁰·⁰⁵_₀.₀₃) + (0.13±0.01⁺⁰·⁰¹_₀.₀₁) lnQ², where Q² is in GeV², for the central x region 0.10–0.60. Several parameterisations of F_{2}^{γ} are in qualitative agreement with the measurements whereas the quark-parton model prediction fails to describe the data
Solution structure of a repeated unit of the ABA-1 nematode polyprotein allergen of ascaris reveals a novel fold and two discrete lipid-binding sites
Parasitic nematode worms cause serious health problems in humans and other animals. They can induce allergic-type immune responses, which can be harmful but may at the same time protect against the infections. Allergens are proteins that trigger allergic reactions and these parasites produce a type that is confined to nematodes, the nematode polyprotein allergens (NPAs). These are synthesized as large precursor proteins comprising repeating units of similar amino acid sequence that are subsequently cleaved into multiple copies of the allergen protein. NPAs bind small lipids such as fatty acids and retinol (Vitamin A) and probably transport these sensitive and insoluble compounds between the tissues of the worms. Nematodes cannot synthesize these lipids, so NPAs may also be crucial for extracting nutrients from their hosts. They may also be involved in altering immune responses by controlling the lipids by which the immune and inflammatory cells communicate. We describe the molecular structure of one unit of an NPA, the well-known ABA-1 allergen of Ascaris and find its structure to be of a type not previously found for lipid-binding proteins, and we describe the unusual sites where lipids bind within this structur
- …
