2,384 research outputs found

    A new method for estimating frequency-dependent core shifts in active galactic nucleus jets

    Get PDF
    We discuss the opacity in the core regions of active galactic nuclei observed with Very Long Baseline Interferometry (VLBI), and describe a new method for deriving the frequency-dependent shifts of the VLBI core from the frequency-dependent time lags of flares observed with single-dish observations. Application of the method to the core shifts of the quasar 3C 345 shows a very good agreement between the core shifts directly measured from VLBI observations and derived from flares in the total flux density using the proposed method. The frequency-dependent time lags of flares can be used to derive physical parameters of the jets, such as distance from the VLBI core to the base of the jet and the magnetic fields in the core region. Our estimates for 3C 345 indicate core magnetic fields ~0.1 G and magnetic field at 1 pc ~0.4 G.Comment: 8 pages, 6 figures, accepted for publication in MNRA

    The Cross-Wavelet Transform and Analysis of Quasiperiodic Behavior in the Pearson-Readhead VLBI Survey Sources

    Get PDF
    We introduce an algorithm for applying a cross-wavelet transform to analysis of quasiperiodic variations in a time-series, and introduce significance tests for the technique. We apply a continuous wavelet transform and the cross-wavelet algorithm to the Pearson-Readhead VLBI survey sources using data obtained from the University of Michigan 26-m parabloid at observing frequencies of 14.5, 8.0, and 4.8 GHz. Thirty of the sixty-two sources were chosen to have sufficient data for analysis, having at least 100 data points for a given time-series. Of these thirty sources, a little more than half exhibited evidence for quasiperiodic behavior in at least one observing frequency, with a mean characteristic period of 2.4 yr and standard deviation of 1.3 yr. We find that out of the thirty sources, there were about four time scales for every ten time series, and about half of those sources showing quasiperiodic behavior repeated the behavior in at least one other observing frequency.Comment: Revised version, accepted by ApJ. 17 pages, 13 figures, color figures included as gifs, seperate from the text. The addition of statistical significance tests has resulted in modifying the technique and results, but the broad conclusion remain the same. A high resolution version may be found at http://www.astro.lsa.umich.edu/obs/radiotel/prcwdata.htm

    The extreme flare in III Zw 2: Evolution of a radio jet in a Seyfert galaxy

    Full text link
    A very detailed monitoring of a radio flare in the Seyfert I galaxy III Zw 2 with the VLA and the VLBA is presented. The relative astrometry in the VLBA observations was precise on a level of a few microarcseconds. Spectral and spatial evolution of the source are closely linked and these observations allowed us to study in great detail a textbook example of a synchrotron self-absorbed jet. We observe a phase where the jet gets frustrated, without expansion and no spectral evolution. Then the jet breaks free and starts to expand with apparent superluminal motion. This expansion is accompanied by a strong spectral evolution. The results are a good confirmation of synchrotron theory and equipartition for jets.Comment: Astronomy & Astrophysics, accepted, 11 pages, 14 Figures, also available at http://www.jive.nl/~brunthal/pub.shtm

    Statistical analyses of long-term variability of AGN at high radio frequencies

    Full text link
    We present a study of variability time scales in a large sample of Active Galactic Nuclei at several frequencies between 4.8 and 230 GHz. We investigate the differences of various AGN types and frequencies and correlate the measured time scales with physical parameters such as the luminosity and the Lorentz factor. Our sample consists of both high and low polarization quasars, BL Lacertae objects and radio galaxies. The basis of this work is the 22 GHz, 37 GHz and 87 GHz monitoring data from the Metsahovi Radio Observatory spanning over 25 years. In addition,we used higher 90 GHz and 230 GHz frequency data obtained with the SEST-telescope between 1987 and 2003. Further lower frequency data at 4.8 GHz, 8 GHz and 14.5 GHz from the University of Michigan monitoring programme have been used. We have applied three different statistical methods to study the time scales: The structure function, the discrete correlation function and the Lomb-Scargle periodogram. We discuss also the differences and relative merits of these three methods. Our study reveals that smaller flux density variations occur in these sources on short time scales of 1-2 years, but larger outbursts happen quite rarely, on the average only once in every 6 years. We do not find any significant differences in the time scales between the source classes. The time scales are also only weakly related to the luminosity suggesting that the shock formation is caused by jet instabilities rather than the central black hole.Comment: 19 pages, 12 figures, Accepted for publication in A&

    Variability of the Centimeter-Submillimeter Spectrum and Polarization of 3C 273 during Outburst

    Get PDF
    Original article can be found at: http://www.journals.uchicago.edu/ApJ/--Copyright University of Chicago Press/ AASCentimeter to submillimeter total flux and polarization monitoring data are used to investigate the nature of a prominent flare in the quasar 3C 273 during 1995/6. After removal of the quiescent level, the resulting “flare spectra" are well fitted by a simple homogeneous synchrotron source model, which in turn allows the movement of the self-absorption turnover to be tracked during the flare. Both the flare amplitude/time delay relationship and the overall spectral evolution are qualitatively consistent with existing models. The early evolution of the spectrum is best determined and is shown to be in excellent agreement with the Compton stage of the Marscher & Gear shock model. However, the polarization behavior during the flare is different at millimeter and centimeter wavelengths and the observations are difficult to reconcile with a simple transverse shock. They are, however, consistent with a conical shock for which the observed polarization properties vary with distance along the jet. Such variations may be caused, for example, by a change in cone angle owing to disruption caused by the growing component of the magnetic field parallel to the jet axis or by a moderate change in viewing angle.Peer reviewe
    • 

    corecore