8 research outputs found

    Relationship between clinical assessments of function and measurements from an upper-limb robotic rehabilitation device in cervical spinal cord injury

    Full text link
    Upper limb robotic rehabilitation devices can collect quantitative data about the user's movements. Identifying relationships between robotic sensor data and manual clinical assessment scores would enable more precise tracking of the time course of recovery after injury and reduce the need for time-consuming manual assessments by skilled personnel. This study used measurements from robotic rehabilitation sessions to predict clinical scores in a traumatic cervical spinal cord injury (SCI) population. A retrospective analysis was conducted on data collected from subjects using the Armeo®Spring (Hocoma, AG) in three rehabilitation centres. 14 predictive variables were explored, relating to range of motion, movement smoothness, and grip ability. Regression models using up to 4 predictors were developed to describe the following clinical scores: the GRASSP (consisting of four sub-scores), the ARAT, and the SCIM. The resulting adjusted R^2 value was highest for the GRASSP Quantitative Prehension component (0.78), and lowest for the GRASSP Sensibility component (0.54). In contrast to comparable studies in stroke survivors, movement smoothness was least beneficial for predicting clinical scores in SCI. Prediction of upper-limb clinical scores in SCI is feasible using measurements from a robotic rehabilitation device, without the need for dedicated assessment procedures

    Effect of a robotic rehabilitation device on upper limb function in a sub-acute cervical spinal cord injury population

    Full text link
    Robotic rehabilitation devices have been suggested as a tool to increase the amount of rehabilitation delivered after a neurological injury. Clinical robotic rehabilitation studies of the upper extremity have generally focused on stroke survivors. We present the results of a multi-center pilot study where an upper-limb robotic rehabilitation device (Armeo Spring®, Hocoma AG) was incorporated into the rehabilitation program of 12 subjects with sub-acute cervical spinal cord injury (motor level C4-C6, AIS A-D). Outcomes were measured using two tests of upper extremity function: ARAT and GRASSP. The change in scores for the arm receiving the Armeo training were not statistically significant when compared to the arm not receiving the Armeo training at discharge from therapy and over follow up assessments (8.7 +/- 2.9 compared to 7.4 +/- 2.5 for ARAT at discharge, p = 0.98, and 13.0 +/- 3.2 compared to 13.3 +/- 3.3 for GRASSP at discharge, p = 0.69). Nevertheless, subjects with some minimal (partial) hand function at baseline had a significantly larger increase in GRASSP scores than subjects with no minimal hand function preserved at baseline (19.3 +/- 2.4 compared to 6.6 +/- 4.7, p = 0.02). This suggests that the initial functional capabilities of patients can influence the benefits measured after robotic rehabilitation training and heterogeneous subject populations should be avoided in early phase studies

    Feasibility and efficacy of upper limb robotic rehabilitation in a subacute cervical spinal cord injury population

    Full text link
    Study design: Multi-center pilot study.Objectives:To investigate the use of an upper limb robotic rehabilitation device (Armeo Spring, Hocoma AG, Switzerland) in a subacute cervical spinal cord injury (SCI) population.Setting: Two Canadian inpatient rehabilitation centers.Methods:Twelve subjects (motor level C4-C6, ASIA Impairment Scale A-D) completed the training, which consisted of 16.1±4.6 sessions over 5.2±1.4 weeks. Two types of outcomes were recorded: (1) feasibility of incorporating the device into an inpatient rehabilitation program (compliance with training schedule, reduction in therapist time required and subject questionnaires) and (2) efficacy of the robotic rehabilitation for improving functional outcomes (Graded and Redefined Assessment of Strength, Sensibility and Prehension (GRASSP), action research arm test, grip dynamometry and range of motion).Results:By the end of the training period, the robot-assisted training was shown to require active therapist involvement for 25±11% (mean±s.d.) of the total session time. In the group of all subjects and in a subgroup composed of motor-incomplete subjects, no statistically significant differences were found between intervention and control limbs for any of the outcome measures. In a subgroup of subjects with partial hand function at baseline, the GRASSP-Sensibility component showed a statistically significant increase (6.0±1.6 (mean±s.e.m.) point increase between baseline and discharge for the intervention limbs versus 1.9±0.9 points for the control limbs).Conclusion:The pilot results suggest that individuals with some preserved hand function after SCI may be better candidates for rehabilitation training using the Armeo Spring device.Spinal Cord advance online publication, 13 September 2011; doi:10.1038/sc.2011.104

    Osteogenesis of mesenchymal stem cells by nanoscale mechanotransduction

    No full text
    It is likely that mesenchymal stem cells will find use in many autologous regenerative therapies. However, our ability to control cell stem growth and differentiation is presently limited, and this is a major hurdle to the clinical use of these multipotent cells especially when considering the desire not to use soluble factors or complex media formulations in culture. Also, the large number of cells required to be clinically useful is currently a hurdle to using materials-based (stiffness, chemistry, nanotopography, etc.) culture substrates. Here we give a first demonstration of using nanoscale sinusoidal mechanotransductive protocols (10–14 nm displacements at 1 kHz frequency), “nanokicking”, to promote osteoblastogenesis in human mesenchymal stem cell cultures. On the basis of application of the reverse piezo effect, we use interferometry to develop the optimal stem cell stimulation conditions, allowing delivery of nanoscale cues across the entire surface of the Petri dishes used. A combination of immunofluorescence, PCR, and microarray has then been used to demonstrate osteoblastogenesis, and the arrays implicate RhoA as central to osteoblastic differentiation in agreement with materials-based strategies. We validate this with pharmacological inhibition of RhoA kinase. It is easy to envisage such stimulation protocols being up-scaled to form large-scale osteoblast bioreactors as standard cell culture plates and incubators are used in the protocol
    corecore