1,159 research outputs found

    Role of anisotropy in the F\"orster energy transfer from a semiconductor quantum well to an organic crystalline overlayer

    Full text link
    We consider the non-radiative resonant energy transfer from a two-dimensional Wannier exciton (donor) to a Frenkel exciton of a molecular crystal overlayer (acceptor). We characterize the effect of the optical anisotropy of the organic subsystem on this process. Using realistic values of material parameters, we show that it is possible to change the transfer rate within typically a factor of two depending on the orientation of the crystalline overlayer. The resonant matching of donor and acceptor energies is also partly tunable via the organic crystal orientation.Comment: 6 pages, 8 figure

    Microscopic derivation of Frenkel excitons in second quantization

    Full text link
    Starting from the microscopic hamiltonian describing free electrons in a periodic lattice, we derive the hamiltonian appropriate to Frenkel excitons. This is done through a grouping of terms different from the one leading to Wannier excitons. This grouping makes appearing the atomic states as a relevant basis to describe Frenkel excitons in the second quantization. Using them, we derive the Frenkel exciton creation operators as well as the commutators which rule these operators and which make the Frenkel excitons differing from elementary bosons. The main goal of the present paper is to provide the necessary grounds for future works on Frenkel exciton many-body effects, with the composite nature of these particles treated exactly through a procedure similar to the one we have recently developed for Wannier excitons.Comment: 16 pages, 4 figure

    Strong and weak coupling limits in optics of quantum well excitons

    Get PDF
    A transition between the strong (coherent) and weak (incoherent) coupling limits of resonant interaction between quantum well (QW) excitons and bulk photons is analyzed and quantified as a function of the incoherent damping rate caused by exciton-phonon and exciton-exciton scattering. For confined QW polaritons, a second, anomalous, damping-induced dispersion branch arises and develops with increasing damping. In this case, the strong-weak coupling transition is attributed to a critical damping rate, when the intersection of the normal and damping-induced dispersion branches occurs. For the radiative states of QW excitons, i.e., for radiative QW polaritons, the transition is described as a qualitative change of the photoluminescence spectrum at grazing angles along the QW structure. Furthermore, we show that the radiative corrections to the QW exciton states with in-plane wavevector approaching the photon cone are universally scaled by an energy parameter rather than diverge. The strong-weak coupling transition rates are also proportional to the same energy parameter. The numerical evaluations are given for a GaAs single quantum well with realistic parameters.Comment: Published in Physical Review B. 29 pages, 12 figure

    Biphonons in the Klein-Gordon lattice

    Full text link
    A numerical approach is proposed for studying the quantum optical modes in the Klein-Gordon lattices where the energy contribution of the atomic displacements is non-quadratic. The features of the biphonon excitations are investigated in detail for different non-quadratic contributions to the Hamiltonian. The results are extended to multi-phonon bound states.Comment: Comments and suggestions are welcom

    Comment on "Effects of spatial dispersion on electromagnetic surface modes and on modes associated with a gap between two half spaces"

    Full text link
    Recently Bo E. Sernelius [Phys. Rev. B {\bf 71}, 235114 (2005)] investigated the effects of spatial dispersion on the thermal Casimir force between two metal half spaces. He claims that incorporating spatial dispersion results in a negligible contribution from the transverse electric mode at zero frequency as compared to the transverse magnetic mode. We demonstrate that this conclusion is not reliable because, when applied to the Casimir effect, the approximate description of spatial dispersion used is unjustified.Comment: 9 pages, minor corrections in accordance with the journal publication have been mad

    The effect of extreme confinement on the nonlinear-optical response of quantum wires

    Full text link
    This work focuses on understanding the nonlinear-optical response of a 1-D quantum wire embedded in 2-D space when quantum-size effects in the transverse direction are minimized using an extremely weighted delta function potential. Our aim is to establish the fundamental basis for understanding the effect of geometry on the nonlinear-optical response of quantum loops that are formed into a network of quantum wires. Using the concept of leaky quantum wires, it is shown that in the limit of full confinement, the sum rules are obeyed when the transverse infinite-energy continuum states are included. While the continuum states associated with the transverse wavefunction do not contribute to the nonlinear optical response, they are essential to preserving the validity of the sum rules. This work is a building block for future studies of nonlinear-optical enhancement of quantum graphs (which include loops and bent wires) based on their geometry. These properties are important in quantum mechanical modeling of any response function of quantum-confined systems, including the nonlinear-optical response of any system in which there is confinement in at leat one dimension, such as nanowires, which provide confinement in two dimensions

    Enhancement of coherent energy transfer by disorder and temperature in light harvesting processes

    Full text link
    We investigate the influence of static disorder and thermal excitations on excitonic energy transport in the light-harvesting apparatus of photosynthetic systems by solving the Schr\"{o}dinger equation and taking into account the coherent hoppings of excitons, the rates of exciton creation and annihilation in antennas and reaction centers, and the coupling to thermally excited phonons. The antennas and reaction centers are modeled, respectively, as the sources and drains which provide the channels for creation and annihilation of excitons. Phonon modes below a maximum frequency are coupled to the excitons that are continuously created in the antennas and depleted in the reaction centers, and the phonon population in these modes obeys the Bose-Einstein distribution at a given temperature. It is found that the energy transport is not only robust against the static disorder and the thermal noise, but it can also be enhanced by increasing the randomness and temperature in most parameter regimes. Relevance of our work to the highly efficient energy transport in photosynthetic systems is discussed.Comment: 21 pages, 6 figure

    High temperature phase transition in the coupled atom-light system in the presence of optical collisions

    Full text link
    The problem of photonic phase transition for the system of a two-level atomic ensemble interacting with a quantized single-mode electromagnetic field in the presence of optical collisions (OC) is considered. We have shown that for large and negative atom-field detuning a photonic field exhibits high temperature second order phase transition to superradiant state under thermalization condition for coupled atom-light states. Such a transition can be connected with superfluid (coherent) properties of photon-like low branch (LB) polaritons. We discuss the application of metallic cylindrical waveguide for observing predicted effects.Comment: 8 pages, 2 figure
    corecore