886 research outputs found

    Generation of spin currents via Raman scattering

    Full text link
    We show theoretically that stimulated spin flip Raman scattering can be used to inject spin currents in doped semiconductors with spin split bands. A pure spin current, where oppositely oriented spins move in opposite directions, can be injected in zincblende crystals and structures. The calculated spin current should be detectable by pump-probe optical spectroscopy and anomalous Hall effect measurement

    Frustrated square lattice with spatial anisotropy: crystal structure and magnetic properties of PbZnVO(PO4)2

    Full text link
    Crystal structure and magnetic properties of the layered vanadium phosphate PbZnVO(PO4)2 are studied using x-ray powder diffraction, magnetization and specific heat measurements, as well as band structure calculations. The compound resembles AA'VO(PO4)2 vanadium phosphates and fits to the extended frustrated square lattice model with the couplings J(1), J(1)' between nearest-neighbors and J(2), J(2)' between next-nearest-neighbors. The temperature dependence of the magnetization yields estimates of averaged nearest-neighbor and next-nearest-neighbor couplings, J(1) ~ -5.2 K and J(2) ~ 10.0 K, respectively. The effective frustration ratio alpha=J(2)/J(1) amounts to -1.9 and suggests columnar antiferromagnetic ordering in PbZnVO(PO4)2. Specific heat data support the estimates of J(1) and J(2) and indicate a likely magnetic ordering transition at 3.9 K. However, the averaged couplings underestimate the saturation field, thus pointing to the spatial anisotropy of the nearest-neighbor interactions. Band structure calculations confirm the identification of ferromagnetic J(1), J(1)' and antiferromagnetic J(2), J(2)' in PbZnVO(PO4)2 and yield J(1)'-J(1) ~ 1.1 K in excellent agreement with the experimental value of 1.1 K, deduced from the difference between the expected and experimentally measured saturation fields. Based on the comparison of layered vanadium phosphates with different metal cations, we show that a moderate spatial anisotropy of the frustrated square lattice has minor influence on the thermodynamic properties of the model. We discuss relevant geometrical parameters, controlling the exchange interactions in these compounds, and propose a new route towards strongly frustrated square lattice materials.Comment: 14 pages, 9 figures, 5 table

    Electron-Electron Relaxation Effect on Auger Recombination in Direct Band Semiconductors

    Full text link
    Influence of electron-electron relaxation processes on Auger recombination rate in direct band semiconductors is investigated. Comparison between carrier-carrier and carrier-phonon relaxation processes is provided. It is shown that relaxation processes are essential if the free path length of carriers doesn't exceed a certain critical value, which exponentially increases with temperature. For illustration of obtained results a typical InGaAsP compound is used

    Interplay of atomic displacements in the quantum magnet (CuCl)LaNb2O7

    Full text link
    We report on the crystal structure of the quantum magnet (CuCl)LaNb2O7 that was controversially described with respect to its structural organization and magnetic behavior. Using high-resolution synchrotron powder x-ray diffraction, electron diffraction, transmission electron microscopy, and band structure calculations, we solve the room-temperature structure of this compound [alpha-(CuCl)LaNb2O7] and find two high-temperature polymorphs. The gamma-(CuCl)LaNb2O7 phase, stable above 640K, is tetragonal with a(sub) = 3.889 A, c(sub) = 11.738 A, and the space group P4/mmm. In the gamma-(CuCl)LaNb2O7 structure, the Cu and Cl atoms are randomly displaced from the special positions along the {100} directions. The beta-phase [a(sub) x 2a(sub) x c(sub), space group Pbmm] and the alpha-phase [2a(sub) x 2a(sub) x c(sub), space group Pbam] are stable between 640 K and 500 K and below 500 K, respectively. The structural changes at 500 K and 640 K are identified as order-disorder phase transitions. The displacement of the Cl atoms is frozen upon the gamma --> beta transformation, while a cooperative tilting of the NbO6 octahedra in the alpha-phase further eliminates the disorder of the Cu atoms. The low-temperature alpha-(CuCl)LaNb2O7 structure thus combines the two types of the atomic displacements that interfere due to the bonding between the Cu atoms and the apical oxygens of the NbO6 octahedra. The precise structural information resolves the controversy between the previous computation-based models and provides the long-sought input for understanding the magnetic properties of (CuCl)LaNb2O7.Comment: 12 pages, 10 figures, 5 tables; crystallographic information (cif files) include

    Correlation effects in sequential energy branching: an exact model of the Fano statistics

    Full text link
    Correlation effects in in the fluctuation of the number of particles in the process of energy branching by sequential impact ionizations are studied using an exactly soluble model of random parking on a line. The Fano factor F calculated in an uncorrelated final-state "shot-glass" model does not give an accurate answer even with the exact gap-distribution statistics. Allowing for the nearest-neighbor correlation effects gives a correction to F that brings F very close to its exact value. We discuss the implications of our results for energy resolution of semiconductor gamma detectors, where the value of F is of the essence. We argue that F is controlled by correlations in the cascade energy branching process and hence the widely used final-state model estimates are not reliable -- especially in the practically relevant cases when the energy branching is terminated by competition between impact ionization and phonon emission.Comment: 11 pages, 4 figures. Submitted to Physical Review

    Theory of transient spectroscopy of multiple quantum well structures

    Full text link
    A theory of the transient spectroscopy of quantum well (QW) structures under a large applied bias is presented. An analytical model of the initial part of the transient current is proposed. The time constant of the transient current depends not only on the emission rate from the QWs, as is usually assumed, but also on the subsequent carrier transport across QWs. Numerical simulation was used to confirm the validity of the proposed model, and to study the transient current on a larger time scale. It is shown that the transient current is influenced by the nonuniform distribution of the electric field and related effects, which results in a step-like behavior of the current. A procedure of extraction of the QW emission time from the transient spectroscopy experiments is suggested.Comment: 5 pages, 4 figures, to be published in J. Appl. Phy

    Spiral ground state against ferroelectricity in the frustrated magnet BiMnFe2O6

    Full text link
    The spiral magnetic structure and underlying spin lattice of BiMnFe2O6 are investigated by low-temperature neutron powder diffraction and density functional theory band structure calculations. In spite of the random distribution of the Mn3+ and Fe3+ cations, this compound undergoes a transition into an incommensurate antiferromagnetically ordered state below TN ~ 220 K. The magnetic structure is characterized by the propagation vector k=[0,beta,0] with beta ~ 0.14 and the P22_12_11'(0 \beta 0)0s0s magnetic superspace symmetry. It comprises antiferromagnetic helixes propagating along the b-axis. The magnetic moments lie in the ac plane and rotate about pi*(1+beta) ~ 204.8 deg angle between the adjacent magnetic atoms along b. The spiral magnetic structure arises from the peculiar frustrated arrangement of exchange couplings in the ab plane. The antiferromagnetic coupling along the c-axis leads to the cancellation of electric polarization, and results in the lack of ferroelectricity in BiMnFe2O6.Comment: 11 pages, 8 figures, 8 table

    (CuCl)LaTa2O7 and quantum phase transition in the (CuX)LaM2O7 family (X = Cl, Br; M = Nb, Ta)

    Full text link
    We apply neutron diffraction, high-resolution synchrotron x-ray diffraction, magnetization measurements, electronic structure calculations, and quantum Monte-Carlo simulations to unravel the structure and magnetism of (CuCl)LaTa2O7. Despite the pseudo-tetragonal crystallographic unit cell, this compound features an orthorhombic superstructure, similar to the Nb-containing (CuX)LaNb2O7 with X = Cl and Br. The spin lattice entails dimers formed by the antiferromagnetic fourth-neighbor coupling J4, as well as a large number of nonequivalent interdimer couplings quantified by an effective exchange parameter Jeff. In (CuCl)LaTa2O7, the interdimer couplings are sufficiently strong to induce the long-range magnetic order with the Neel temperature TN~7 K and the ordered magnetic moment of 0.53 mu_B, as measured with neutron diffraction. This magnetic behavior can be accounted for by Jeff/J4~1.6 and J4~16 K. We further propose a general magnetic phase diagram for the (CuCl)LaNb2O7-type compounds, and explain the transition from the gapped spin-singlet (dimer) ground state in (CuCl)LaNb2O7 to the long-range antiferromagnetic order in (CuCl)LaTa2O7 and (CuBr)LaNb2O7 by an increase in the magnitude of the interdimer couplings Jeff/J_4, with the (CuCl)LaM2O7 (M = Nb, Ta) compounds lying on different sides of the quantum critical point that separates the singlet and long-range-ordered magnetic ground states.Comment: 13 pages, 13 figures, 4 tables + Supplementary informatio
    • …
    corecore