5,195 research outputs found

    Can disorder enhance incoherent exciton diffusion?

    Get PDF
    Recent experiments aimed at probing the dynamics of excitons have revealed that semiconducting films composed of disordered molecular subunits, unlike expectations for their perfectly ordered counterparts, can exhibit a time-dependent diffusivity in which the effective early time diffusion constant is larger than that of the steady state. This observation has led to speculation about what role, if any, microscopic disorder may play in enhancing exciton transport properties. In this article, we present the results of a model study aimed at addressing this point. Specifically, we present a general model, based upon F\"orster theory, for incoherent exciton diffusion in a material composed of independent molecular subunits with static energetic disorder. Energetic disorder leads to heterogeneity in molecule-to-molecule transition rates which we demonstrate has two important consequences related to exciton transport. First, the distribution of local site-specific diffusivity is broadened in a manner that results in a decrease in average exciton diffusivity relative to that in a perfectly ordered film. Second, since excitons prefer to make transitions that are downhill in energy, the steady state distribution of exciton energies is biased towards low energy molecular subunits, those that exhibit reduced diffusivity relative to a perfectly ordered film. These effects combine to reduce the net diffusivity in a manner that is time dependent and grows more pronounced as disorder is increased. Notably, however, we demonstrate that the presence of energetic disorder can give rise to a population of molecular subunits with exciton transfer rates exceeding that of subunits in an energetically uniform material. Such enhancements may play an important role in processes that are sensitive to molecular-scale fluctuations in exciton density field.Comment: 15 pages, 3 figure

    Nonequilibrium dynamics of localized and delocalized excitons in colloidal quantum dot solids

    Full text link
    Self-assembled quantum dot (QD) solids are a highly tunable class of materials with a wide range of applications in solid-state electronics and optoelectronic devices. In this perspective, we highlight how the presence of microscopic disorder in these materials can influence their macroscopic optoelectronic properties. Specifically, we consider the dynamics of excitons in energetically disordered QD solids using a theoretical model framework for both localized and delocalized excitonic regimes. In both cases, we emphasize the tendency of energetic disorder to promote nonequilibrium relaxation dynamics and discuss how the signatures of these nonequilibrium effects manifest in time-dependent spectral measurements. Moreover, we describe the connection between the microscopic dynamics of excitons within the material and the measurement of material specific parameters, such as emission linewidth broadening and energetic dissipation rate.Comment: 4 figure

    Genome engineering of stem cells for autonomously regulated, closed-loop delivery of biologic drugs

    Get PDF
    Chronic inflammatory diseases such as arthritis are characterized by dysregulated responses to pro-inflammatory cytokines such as interleukin-1 (IL-1) and tumor necrosis factor α (TNF-α). Pharmacologic anti-cytokine therapies are often effective at diminishing this inflammatory response but have significant side effects and are used at high, constant doses that do not reflect the dynamic nature of disease activity. Using the CRISPR/Cas9 genome-engineering system, we created stem cells that antagonize IL-1- or TNF-α-mediated inflammation in an autoregulated, feedback-controlled manner. Our results show that genome engineering can be used successfully to rewire endogenous cell circuits to allow for prescribed input/output relationships between inflammatory mediators and their antagonists, providing a foundation for cell-based drug delivery or cell-based vaccines via a rapidly responsive, autoregulated system. The customization of intrinsic cellular signaling pathways in stem cells, as demonstrated here, opens innovative possibilities for safer and more effective therapeutic approaches for a wide variety of diseases
    corecore