5,736 research outputs found
Free vibrations of laminated composite elliptic plates
The free vibrations are studied of laminated anisotropic elliptic plates with clamped edges. The analytical formulation is based on a Mindlin-Reissner type plate theory with the effects of transverse shear deformation, rotary inertia, and bending-extensional coupling included. The frequencies and mode shapes are obtained by using the Rayleigh-Ritz technique in conjunction with Hamilton's principle. A computerized symbolic integration approach is used to develop analytic expressions for the stiffness and mass coefficients and is shown to be particularly useful in evaluating the derivatives of the eigenvalues with respect to certain geometric and material parameters. Numerical results are presented for the case of angle-ply composite plates with skew-symmetric lamination
A computerized symbolic integration technique for development of triangular and quadrilateral composite shallow-shell finite elements
Computerized symbolic integration was used in conjunction with group-theoretic techniques to obtain analytic expressions for the stiffness, geometric stiffness, consistent mass, and consistent load matrices of composite shallow shell structural elements. The elements are shear flexible and have variable curvature. A stiffness (displacement) formulation was used with the fundamental unknowns consisting of both the displacement and rotation components of the reference surface of the shell. The triangular elements have six and ten nodes; the quadrilateral elements have four and eight nodes and can have internal degrees of freedom associated with displacement modes which vanish along the edges of the element (bubble modes). The stiffness, geometric stiffness, consistent mass, and consistent load coefficients are expressed as linear combinations of integrals (over the element domain) whose integrands are products of shape functions and their derivatives. The evaluation of the elemental matrices is divided into two separate problems - determination of the coefficients in the linear combination and evaluation of the integrals. The integrals are performed symbolically by using the symbolic-and-algebraic-manipulation language MACSYMA. The efficiency of using symbolic integration in the element development is demonstrated by comparing the number of floating-point arithmetic operations required in this approach with those required by a commonly used numerical quadrature technique
Shear-flexible finite-element models of laminated composite plates and shells
Several finite-element models are applied to the linear static, stability, and vibration analysis of laminated composite plates and shells. The study is based on linear shallow-shell theory, with the effects of shear deformation, anisotropic material behavior, and bending-extensional coupling included. Both stiffness (displacement) and mixed finite-element models are considered. Discussion is focused on the effects of shear deformation and anisotropic material behavior on the accuracy and convergence of different finite-element models. Numerical studies are presented which show the effects of increasing the order of the approximating polynomials, adding internal degrees of freedom, and using derivatives of generalized displacements as nodal parameters
Finite element modeling and analysis of tires
Predicting the response of tires under various loading conditions using finite element technology is addressed. Some of the recent advances in finite element technology which have high potential for application to tire modeling problems are reviewed. The analysis and modeling needs for tires are identified. Reduction methods for large-scale nonlinear analysis, with particular emphasis on treatment of combined loads, displacement-dependent and nonconservative loadings; development of simple and efficient mixed finite element models for shell analysis, identification of equivalent mixed and purely displacement models, and determination of the advantages of using mixed models; and effective computational models for large-rotation nonlinear problems, based on a total Lagrangian description of the deformation are included
Fuzzy Differential Subordination Involving Generalized Noor-Salagean Operator
The well-known technique of subordination has recently been extended from the geometric function theory to the fuzzy set theory by several authors. In this paper, we use the notion of fuzzy differential subordination to introduce certain fuzzy classes using the generalized Noor-Salagean operator. Certain interesting results are established for these classes
Mixed Models and Reduction Techniques for Large-Rotation, Nonlinear Analysis of Shells of Revolution with Application to Tires
An effective computational strategy is presented for the large-rotation, nonlinear axisymmetric analysis of shells of revolution. The three key elements of the computational strategy are: (1) use of mixed finite-element models with discontinuous stress resultants at the element interfaces; (2) substantial reduction in the total number of degrees of freedom through the use of a multiple-parameter reduction technique; and (3) reduction in the size of the analysis model through the decomposition of asymmetric loads into symmetric and antisymmetric components coupled with the use of the multiple-parameter reduction technique. The potential of the proposed computational strategy is discussed. Numerical results are presented to demonstrate the high accuracy of the mixed models developed and to show the potential of using the proposed computational strategy for the analysis of tires
Morphometric and Phylogenic Analysis of Six Population Indonesian Local Goats
The research objectives were to characterize morphometric and genetic distance between populations of Indonesian local goats. The morphological discriminant and canonical analysis were carried out to estimate the phylogenic relationship and determine the discriminant variable between Benggala goats (n= 96), Marica (n= 60), Jawarandu (n= 94), (Kacang (n= 217), Muara (n= 30) and Samosir (n= 42). Discriminant analysis used to clasify body weight and body measurements. In the analysis of variance showed that body weight and body measurement (body length, height at withers, thorax width, thorax height, hert girth, skull width and height, tail length and width, ear length and width) of Muara goats was higher (P<0.05) compared to the other groups, and the lowest was in Marica goats. The smallest genetic distance was between Marica and Samosir (11.207) and the highest were between Muara and Benggala (255.110). The highest similarity between individual within population was found in Kacang (99.28%) and the lowest in Samosir (82.50%). The canonical analysis showed high correlation on canon circumference, body weight, skull width, skull height, and tail width variables so these six variables can be used as distinguishing variables among population. The result from Mahalonobis distance for phenogram tree and canonical analysis showed that six populations of Indonesian local goats were divided into six breed of goats: the first was Muara, the second was Jawarandu, the third was Kacang, the fourth was Benggala, the fifth was Samosir and the sixth was Marica goats. The diversity of body size and body weight of goats was observed quite large, so the chances of increasing productivity could be made through selection and mating programs
The Mediation Effect of Trusting Beliefs on the Relationship Between Expectation-Confirmation and Satisfaction with the Usage of Online Product Recommendation
Online Product Recommendations (OPRs) are increasingly available to onlinecustomers as a value-added self-service in evaluating and choosing a product.Research has highlighted several advantages that customers can gain from usingOPRs. However, the realization of these advantages depends on whether and towhat extent customers embrace and fully utilise them. The relatively low OPR USAgerate indicates that customers have not yet developed trust in OPRs’ performance.Past studies also have established that satisfaction is a valid measure of systemperformance and a consistent significant determinant of users’ continuous systemusage. Therefore, this study aimed to examine the mediation effect of trustingbeliefs on the relationship between expectation-confirmation and satisfaction. Theproposed research model is tested using data collected via an online survey from626 existing users of OPRs. The empirical results revealed that social-psychologicalbeliefs (perceived confirmation and trust) are significant contributors to customersatisfaction with OPRs. Additionally, trusting beliefs partially mediate the impactof perceived confirmation on customer satisfaction. Moreover, this study validatesthe extensions of the interpersonal trust construct to trust in OPRs and examinesthe nomological validity of trust in terms of competence, benevolence, andintegrity. The findings provide a number of theoretical and practical implications. 
Burning Skin Detection System in Human Body
Early accurate burn depth diagnosis is crucial for selecting the appropriate clinical intervention strategies and assessing burn patient prognosis quality. However, with limited diagnostic accuracy, the current burn depth diagnosis approach still primarily relies on the empirical subjective assessment of clinicians. With the quick development of artificial intelligence technology, integration of deep learning algorithms with image analysis technology can more accurately identify and evaluate the information in medical images. The objective of the work is to detect and classify burn area in medical images using an unsupervised deep learning algorithm. The main contribution is to developing computations using one of the deep learning algorithm. To demonstrate the effectiveness of the proposed framework, experiments are performed on the benchmark to evaluate system stability. The results indicate that, the proposed system is simple and suits real life applications. The system accuracy was 75%, when compared with some of the state-of-the-art techniques
- …