11,905 research outputs found
Scattering from a Domain Wall in a Spontaneously Broken Gauge Theory
We study the interaction of particles with a domain wall at a
symmetry-breaking phase transition by perturbing about the domain wall
solution. We find the particulate excitations appropriate near the domain wall
and relate them to the particles present far from the wall in the uniform
broken and unbroken phases. For a quartic Higgs potential we find analytic
solutions to the equations of motion and derive reflection and transmission
coefficients. We discover several bound states for particles near the wall.
Finally, we apply our results to the electroweak phase transition in the
standard model.Comment: 48 pages, 10 figures, LaTeX / epsf, revised to include references to
earlier related wor
The Impact of New EUV Diagnostics on CME-Related Kinematics
We present the application of novel diagnostics to the spectroscopic
observation of a Coronal Mass Ejection (CME) on disk by the Extreme Ultraviolet
Imaging Spectrometer (EIS) on the Hinode spacecraft. We apply a recently
developed line profile asymmetry analysis to the spectroscopic observation of
NOAA AR 10930 on 14-15 December 2006 to three raster observations before and
during the eruption of a 1000km/s CME. We see the impact that the observer's
line-of-sight and magnetic field geometry have on the diagnostics used.
Further, and more importantly, we identify the on-disk signature of a
high-speed outflow behind the CME in the dimming region arising as a result of
the eruption. Supported by recent coronal observations of the STEREO
spacecraft, we speculate about the momentum flux resulting from this outflow as
a secondary momentum source to the CME. The results presented highlight the
importance of spectroscopic measurements in relation to CME kinematics, and the
need for full-disk synoptic spectroscopic observations of the coronal and
chromospheric plasmas to capture the signature of such explosive energy release
as a way of providing better constraints of CME propagation times to L1, or any
other point of interest in the heliosphere.Comment: Accepted to appear in Solar Physics Topical Issue titled "Remote
Sensing of the Inner Heliosphere". Manuscript has 14 pages, 5 color figures.
Movies supporting the figures can be found in
http://download.hao.ucar.edu/pub/mscott/papers/Weathe
The effect of oxygen starvation on ignition phenomena in a reactive solid containing a hot-spot
In this paper, we explore the effect of oxygen supply on the conditions necessary to sustain a self-propagating front from a spherical source of heat embedded in a much larger volume of solid. The ignition characteristics for a spherical hot-spot are investigated, where the reaction is limited by oxygen, that is, reactant + oxygen ? product. It is found that over a wide range of realistic oxygen supply levels, constant heating of the solid by the hot-spot results in a self-propagating combustion front above a certain critical hot-spot power; this is clearly an important issue for industries in which hazard prevention is important. The ignition event leading to the formation of this combustion wave involves an extremely sensitive balance between the heat generated by the chemical reaction and the depletion of the reactant. As a result, for small hot-spot radii and infinite oxygen supply, not only is there a critical power above which a self-sustained combustion front is initiated there also exists a power beyond which no front is formed, before a second higher critical power is found. The plot of critical power against hot-spot radius thus takes on a Z-shape appearance. The corresponding shape for the oxygen-limited reaction is qualitatively the same when the ratio of solid thermal diffusion to oxygen mass diffusion (N) is small and we establish critical conditions for the initiation of a self-sustained combustion front in that case. As N gets larger, while still below unity, we show that the Z-shape flattens out. At still larger values of N, the supercritical behaviour becomes increasingly difficult to define and is supplanted by burning that depends more uniformly on power. In other words, the transition from slow burning to complete combustion seen at small values of N for some critical power disappears. Even higher values of N lead to less solid burning at fixed values of power
Recommended from our members
Fiscal and economic stability in the eurozone.
yesEvery day the news is filled with increasingly depressing news about the economy. The recent Autumn
Statement (29 November 2011) to the House of Commons by UK Chancellor of the Exchequer, George
Osborne, confirmed that the cause of a potential ?double dip? recession in the British economy lay largely
at the doors of the European Union and, in particular, the eurozone. It is easy to understand why some
commentators feel that perhaps the European single currency is in its death-throes, and that the European
Union itself needs major structural revisions. But for the sake of perspective it is important to remember the
underlying rationale behind the ?European project? which remains as relevant today as it did in the 1950s
Explanatory debugging: Supporting end-user debugging of machine-learned programs
Many machine-learning algorithms learn rules of behavior from individual end users, such as task-oriented desktop organizers and handwriting recognizers. These rules form a “program” that tells the computer what to do when future inputs arrive. Little research has explored how an end user can debug these programs when they make mistakes. We present our progress toward enabling end users to debug these learned programs via a Natural Programming methodology. We began with a formative study exploring how users reason about and correct a text-classification program. From the results, we derived and prototyped a concept based on “explanatory debugging”, then empirically evaluated it. Our results contribute methods for exposing a learned program's logic to end users and for eliciting user corrections to improve the program's predictions
Novel technique to extract experimental symmetry free energy information of nuclear matter
A new method of accessing information on the symmetry free energy from yields
of fragments produced in Fermi-energy heavy-ion collisions is proposed.
Furthermore, by means of quantum fluctuation analysis techniques, correlations
between extracted symmetry free-energy coefficients with temperature and
density were studied. The obtained results are consistent with those of
commonly used isoscaling techniques.Comment: 6 pages, 3 figures Heavy-ion nuclear reactions at Fermi energies,
Nuclear equation of State, Fragmentatio
Scaling Relations of Spiral Galaxies
We construct a large data set of global structural parameters for 1300 field
and cluster spiral galaxies and explore the joint distribution of luminosity L,
optical rotation velocity V, and disk size R at I- and 2MASS K-bands. The I-
and K-band velocity-luminosity (VL) relations have log-slopes of 0.29 and 0.27,
respectively with sigma_ln(VL)~0.13, and show a small dependence on color and
morphological type in the sense that redder, early-type disk galaxies rotate
faster than bluer, later-type disk galaxies for most luminosities. The VL
relation at I- and K-bands is independent of surface brightness, size and light
concentration. The log-slope of the I- and K-band RL relations is a strong
function of morphology and varies from 0.25 to 0.5. The average dispersion
sigma_ln(RL) decreases from 0.33 at I-band to 0.29 at K, likely due to the
2MASS selection bias against lower surface brightness galaxies. Measurement
uncertainties are sigma_ln(V)~0.09, sigma_ln(L)~0.14 and somewhat larger and
harder to estimate for ln(R). The color dependence of the VL relation is
consistent with expectations from stellar population synthesis models. The VL
and RL residuals are largely uncorrelated with each other; the RV-RL residuals
show only a weak positive correlation. These correlations suggest that scatter
in luminosity is not a significant source of the scatter in the VL and RL
relations. The observed scaling relations can be understood in the context of a
model of disk galaxies embedded in dark matter halos that invokes low mean spin
parameters and dark halo expansion, as we describe in our companion paper
(Dutton et al. 2007). We discuss in two appendices various pitfalls of standard
analytical derivations of galaxy scaling relations, including the Tully-Fisher
relation with different slopes. (Abridged).Comment: Accepted for publication at ApJ. The full document, with
high-resolution B&W and colour figures, is available at
http://www.astro.queensu.ca/~courteau/papers/VRL2007ApJ.pdf . Our data base
for 1303 spiral galaxies is also available at
http://www.astro.queensu.ca/~courteau/data/VRL2007.da
- …
