8,088 research outputs found
A Comparison of Predictions for SM Higgs Boson Production at the LHC
This paper describes a comparison of most of the available predictions for
the cross section and transverse momentum distribution for a 125 GeV mass Higgs
at the LHC, including those from the PYTHIA and HERWIG parton shower Monte
Carlos and from four resummation calculations.Comment: 7 pages, submitted to proceedings of the Workshop on Physics at TeV
Colliders, Les Houches 200
Barn Owl (Tyto alba) Food Habits in West-Central Arkansas
This study was conducted on Holla Bend National Wildlife Refuge in west-central Arkansas to investigate the food habits of the common barn owl (Tyto alba). Three hundred thirty-eight pellets were collected from four barn owl nest boxes yielding the remains of 1003 individual prey items. Hispid cotton rats (Sigmodon hispidus) were eaten most frequently, comprising 46.8% of the diet by frequency. Results of this study are compared with those from other Arkansas ecoregions to assess regional variation in the diet of this endangered species
Propeller Slipstream Effects As Determined From Wing Pressure Distribution Of A Large-Scale Six-Propeller VTOL Model At Static Thrust
Propeller slipstream effects as determined from wing pressure distribution of a large-scale six-propeller vtol model at static thrus
Chlamydia trachomatis responds to heat shock, penicillin induced persistence, and IFN-gamma persistence by altering levels of the extracytoplasmic stress response protease HtrA
Background Chlamydia trachomatis, an obligate intracellular human pathogen, is the most prevalent bacterial sexually transmitted infection worldwide and a leading cause of preventable blindness. HtrA is a virulence and stress response periplasmic serine protease and molecular chaperone found in many bacteria. Recombinant purified C. trachomatis HtrA has been previously shown to have both activities. This investigation examined the physiological role of Chlamydia trachomatis HtrA. Results The Chlamydia trachomatis htrA gene complemented the lethal high temperature phenotype of Escherichia coli htrA- (>42°C). HtrA levels were detected to increase by western blot and immunofluorescence during Chlamydia heat shock experiments. Confocal laser scanning microscopy revealed a likely periplasmic localisation of HtrA. During penicillin induced persistence of Chlamydia trachomatis, HtrA levels (as a ratio of LPS) were initially less than control acute cultures (20 h post infection) but increased to more than acute cultures at 44 h post infection. This was unlike IFN-γ persistence where lower levels of HtrA were observed, suggesting Chlamydia trachomatis IFN-γ persistence does not involve a broad stress response. Conclusion The heterologous heat shock protection for Escherichia coli, and increased HtrA during cell wall disruption via penicillin and heat shock, indicates an important role for HtrA during high protein stress conditions for Chlamydia trachomatis
kt Effects in Direct-Photon Production
We discuss the phenomenology of initial-state parton-kt broadening in
direct-photon production and related processes in hadron collisions. After a
brief summary of the theoretical basis for a Gaussian-smearing approach, we
present a systematic study of recent results on fixed-target and collider
direct-photon production, using complementary data on diphoton and pion
production to provide empirical guidance on the required amount of kt
broadening. This approach provides a consistent description of the observed
pattern of deviation of next-to-leading order QCD calculations relative to the
direct-photon data, and accounts for the shape and normalization difference
between fixed-order perturbative calculations and the data. We also discuss the
uncertainties in this phenomenological approach, the implications of these
results on the extraction of the gluon distribution of the nucleon, and the
comparison of our findings to recent related work.Comment: LaTeX, uses revtex and epsf, 37 pages, 15 figure
Implications of Hadron Collider Observables on Parton Distribution Function Uncertainties
Standard parton distribution function sets do not have rigorously quantified
uncertainties. In recent years it has become apparent that these uncertainties
play an important role in the interpretation of hadron collider data. In this
paper, using the framework of statistical inference, we illustrate a technique
that can be used to efficiently propagate the uncertainties to new observables,
assess the compatibility of new data with an initial fit, and, in case the
compatibility is good, include the new data in the fit.Comment: 22 pages, 5 figure
Detoxification enzyme activities (CYP1A1 and GST) in the skin of humpback whales as a function of organochlorine burdens and migration status
The activities of glutathione-s-transferase (GST) and cytochrome P-450 1A1 (CYP1A1) enzymes were measured in freshly extracted epidermis of live-biopsied, migrating, southern hemisphere humpback whales (Megaptera novaeangliae). The two quantified enzyme activities did not correlate strongly with each other. Similarly, neither correlated strongly with any of the organochlorine compound groups previously measured in the superficial blubber of the sample biopsy core, likely reflecting the anticipated low levels of typical aryl-hydrocarbon receptor ligands. GST activity did not differ significantly between genders or between northward (early migration) or southward (late migration) migrating cohorts. Indeed, the inter-individual variability in GST measurements was relatively low. This observation raises the possibility that measured activities were basal activities and that GST function was inherently impacted by the fasting state of the sampled animals, as seen in other species. These results do not support the implementation of CYP1A1 or GST as effective biomarkers of organochlorine contaminant burdens in southern hemisphere populations of humpback whales as advocated for other cetacean species. Further investigation of GST activity in feeding versus fasting cohorts may, however, provide some insight into the fasting metabolism of these behaviourally adapted populations. © 2014
Optical Microscopy and Atomic Force Microscopy Imaging of 2,4,6-Trinitrotoluene Droplets and Clusters on Mica
Optical and atomic force microscopy (AFM) were used to image 2,4,6-trinitrotoluene (TNT) on a cleaved mica (001) surface. The vapor deposition of TNT resulted in ellipsoidal drop formation on the mica surface. The growth rate of the drop diameter was found to be linear with vapor dosing time while the drop density followed a 1/r2 dependence, where r is the length of the major axis of the ellipsoid, for increasing dosing times. TNT platelets surrounded by a region depleted of drops were observed after 8 hours of dosing. The depleted region is attributed to a 10% shrinkage for liquid-solid transition for TNT and also from the enthalpy of fusion which causes the vaporization of small drops and clusters of TNT. Residues of TNT located in the depleted regions were characterized by AFM lift-off forces and were attributed to different morphologies of TNT that nucleated at different sites on the mica surface or dinitro- and trinitro-benzene derivatives which are common impurities in 2,4,6-trinitrotoluene
- …