36,011 research outputs found

    Superconducting Puddles and "Colossal'' Effects in Underdoped Cuprates

    Full text link
    Phenomenological models for the antiferromagnetic (AF) vs. d-wave superconductivity competition in cuprates are studied using conventional Monte Carlo techniques. The analysis suggests that cuprates may show a variety of different behaviors in the very underdoped regime: local coexistence or first-order transitions among the competing orders, stripes, or glassy states with nanoscale superconducting (SC) puddles. The transition from AF to SC does not seem universal. In particular, the glassy state leads to the possibility of "colossal'' effects in some cuprates, analog of those in manganites. Under suitable conditions, non-superconducting Cu-oxides could rapidly become superconducting by the influence of weak perturbations that align the randomly oriented phases of the SC puddles in the mixed state. Consequences of these ideas for thin-film and photoemission experiments are discussed.Comment: RevTeX 4, revised expanded version, 8 pages, 8 figure

    Simultaneous analysis of elastic scattering and transfer/breakup channels for the 6He+208Pb reaction at energies near the Coulomb barrier

    Get PDF
    The elastic and alpha-production channels for the 6He+208Pb reaction are investigated at energies around the Coulomb barrier (E_{lab}=14, 16, 18, 22, and 27 MeV). The effect of the two-neutron transfer channels on the elastic scattering has been studied within the Coupled-Reaction-Channels (CRC) method. We find that the explicit inclusion of these channels allows a simultaneous description of the elastic data and the inclusive alpha cross sections at backward angles. Three-body Continuum-Discretized Coupled-Channels (CDCC) calculations are found to reproduce the elastic data, but not the transfer/breakup data. The trivially-equivalent local polarization potential (TELP) derived from the CRC and CDCC calculations are found to explain the features found in previous phenomenological optical model calculations for this system.Comment: 7 pages, 6 figures (replaced with updated version

    Revised Pulsar Spindown

    Full text link
    We address the issue of electromagnetic pulsar spindown by combining our experience from the two limiting idealized cases which have been studied in great extent in the past: that of an aligned rotator where ideal MHD conditions apply, and that of a misaligned rotator in vacuum. We construct a spindown formula that takes into account the misalignment of the magnetic and rotation axes, and the magnetospheric particle acceleration gaps. We show that near the death line aligned rotators spin down much slower than orthogonal ones. In order to test this approach, we use a simple Monte Carlo method to simulate the evolution of pulsars and find a good fit to the observed pulsar distribution in the P-Pdot diagram without invoking magnetic field decay. Our model may also account for individual pulsars spinning down with braking index n < 3, by allowing the corotating part of the magnetosphere to end inside the light cylinder. We discuss the role of magnetic reconnection in determining the pulsar braking index. We show, however, that n ~ 3 remains a good approximation for the pulsar population as a whole. Moreover, we predict that pulsars near the death line have braking index values n > 3, and that the older pulsar population has preferentially smaller magnetic inclination angles. We discuss possible signatures of such alignment in the existing pulsar data.Comment: 8 pages, 7 figures; accepted to Ap

    Quasi-exactly solvable quartic potentials with centrifugal and Coulombic terms

    Full text link
    PT symmetric complex potential V(r) = - r^4 + i a r^3 + b r^2 + i c r + i d/r + e/r^2 is studied. Arbitrarily large multiplets of its closed bound-state solutions with real energies are shown obtainable quasi-exactly (i.e., with a certain relationship between their charges and energies) from a single underlying finite-dimensional secular equation.Comment: 13 pages, 1 figure, submitted to J. Phys. A: Math. Ge

    On the \phi(1020)f_0(980) S-wave scattering and the Y(2175) resonance

    Full text link
    We have studied the \phi(1020)f_0(980) S-wave scattering at energies around threshold employing chiral Lagrangians coupled to vector mesons through minimal coupling. The interaction kernel is obtained by considering the f_0(980) as a K\bar{K} bound state. The Y(2175) resonance is generated in this approach by the self-interactions between the \phi(1020) and the f_0(980) resonances. We are able to describe the e^+e^-\to \phi(1020)f_0(980) recent scattering data to test experimentally our scattering amplitudes, concluding that the Y(2175) resonance has a large \phi(1020)f_0(980) meson-meson component.Comment: 20 pages, 8 figure

    Evaluation of design recommendations for the development of wheelchair rugby sports-wear

    Get PDF
    Currently, wheelchair rugby athletes face the challenges of playing the sport without specifically designed sports-wear kit. A few designs and recommendations have already been proposed by researchers but none have made it to market yet. The purpose of this study was to evaluate a set of design recommendations for the development of wheelchair rugby sports-wear. This was done so that the products to be created are developed in collaboration with their potential users, responding to their particular needs and requirements. The evaluation was done through an online survey, where the athletes were presented with a visual representation of the design recommendations. The results indicate that the people questioned agree with the majority of the proposed designs and would be happy to have these improvements made to their current sports-wear. The most criticised recommendations were for the gloves, as they are the most important part of the kit, so it is important that they are adequate and allow for a good performance
    • …
    corecore