10 research outputs found

    Multidisciplinary Optimization of Axial Turbine Blade Based on CFD Modelling and FEA Analysis

    Get PDF
    The turbine blade is designed to achieve expansion at high efficiency levels. For improving the turbine efficiency, different aerodynamic design optimisations are performed. On the other hand, the aerodynamic design must be enhanced to match the mechanical design. This research proposes a novel design optimisation method for both aerodynamic and mechanical requirements. A multidisciplinary optimisation approach is used to improve the reliability of the turbine design, which included the use of Computational Fluid Dynamics (CFD) models and Finite Element Analysis (FEA). The primary objective is to guarantee that the aerodynamically optimised blade profile could efficiently withstand mechanical stress. The multidisciplinary optimisation approach is successful in reducing total equivalent pressures from 49.72 MPa to 41.73 MPa while keeping the turbine's overall efficiency at an impressive level of 80.95%. These Results highlight the effectiveness of using a multidisciplinary optimization method to successfully improve the efficiency of a turbine blade profile while simultaneously ensuring its ability to withstand the needed mechanical loads. Using a multidisciplinary optimisation method, the turbine maintains an impressively high efficiency of approximately 83%, with only a marginal reduction of 1.8% compared to the efficiency achieved solely through aerodynamic blade optimisation

    Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films

    Get PDF
    : Biocomposite materials are essential for environmental protection, as they have the ability of substituting synthetic plastic with natural materials. This work investigated how different plasticizers (Glycerol (G), Fructose (F), Sorbitol (S), and Urea (U)) affect the morphological, mechanical, thermal, and physical characteristics of films made of wheat starch at various concentrations (0%, 15%, 25%, and 35%). Plasticizers were added to improve the flexibility and homogeneity of the wheat starch-based bioplastic. Control film exhibited high tensile strength (38.7 MPa) with low elongation (1.9%). However, films plasticized with 35% sorbitol showed the highest elongation, which was 60.7% at break. At 35% of all plasticizers, fructose showed the highest tensile strength, with 7.6 MPa. The addition of different plasticizers shows improvement in water resistance; films plasticized with glycerol had the lowest water absorption at 35% fructose (187.4%) and also showed coherent surfaces. Glycerol, sorbitol, and urea films showed a higher mass loss compared to fructose films. Fructose showed the highest performance after the analysis of the results, with low water absorption, water content, and mass loss and with high mechanical performance at 35% of fructose. SEM images show that the addition of fructose and glycerol improves the surface homogenate, while sorbitol and urea have a less compact structure with large pores

    Assessment of Recycled Plastic Performance in The City of Zawia Libya

    Get PDF
    Plastic particles and other plastic pollutants exist in our environment and in the food chain and threaten human health. Inappropriate handling and disposal of plastic waste is a global problem and is still not resolved in many countries. When recycling companies need to deal with complex plastic, the problem becomes even more serious, which can prevent their recycling initiatives. The main purpose of this research is to determine whether recycled products can be used as post-consumer materials in various recycling ratios to produce new products without reducing quality. In the study, 0 percent, 20%, 50%, 70%, and 100 percent regrind ratios were used. Reduction, hardness, and solid density are the qualities studied. The results show that the properties did not change significantly

    Assessment of Recycled Plastic Performance in The City of Zawia Libya

    Get PDF
    Plastic particles and other plastic pollutants exist in our environment and in the food chain and threaten human health. Inappropriate handling and disposal of plastic waste is a global problem and is still not resolved in many countries. When recycling companies need to deal with complex plastic, the problem becomes even more serious, which can prevent their recycling initiatives. The main purpose of this research is to determine whether recycled products can be used as post-consumer materials in various recycling ratios to produce new products without reducing quality. In the study, 0 percent, 20%, 50%, 70%, and 100 percent regrind ratios were used. Reduction, hardness, and solid density are the qualities studied. The results show that the properties did not change significantly

    Effect of Various Plasticizers in Different Concentrations on :Physical, Thermal, Mechanical, and Structural Properties of :Wheat Starch-Based Films

    Get PDF
    Biocomposite materials are essential for environmental protection, as they have the ability of substituting synthetic plastic with natural materials. This work investigated how different plas¬ticizers (Glycerol (G), Fructose (F), Sorbitol (S), and Urea (U)) affect the morphological, mechanical, thermal, and physical characteristics of films made of wheat starch at various concentrations (0%, 15%, 25%, and 35%). Plasticizers were added to improve the flexibility and homogeneity of the wheat starch-based bioplastic. Control film exhibited high tensile strength (38.7 MPa) with low elon¬gation (1.9%). However, films plasticized with 35% sorbitol showed the highest elongation, which was 60.7% at break. At 35% of all plasticizers, fructose showed the highest tensile strength, with 7.6 MPa. The addition of different plasticizers shows improvement in water resistance; films plasticized with glycerol had the lowest water absorption at 35% fructose (187.4%) and also showed coherent surfaces. Glycerol, sorbitol, and urea films showed a higher mass loss compared to fructose films. Fructose showed the highest performance after the analysis of the results, with low water absorp¬tion, water content, and mass loss and with high mechanical performance at 35% of fructose. SEM images show that the addition of fructose and glycerol improves the surface homogenate, while sorbitol and urea have a less compact structure with large pores

    Comparison of High-order Accurate Schemes for Solving the Nonlinear Viscous Burgers Equation

    No full text
    Abs tract: In this paper, a comparis on between h ig h e r order s chemes has been performed in terms of numerical accuracy. Four finite difference s chemes, the e xp lic it fourth-order compact Pade scheme, the implicit fourth-order Pade scheme, flowfield dependent variation (FDV) meth o d a n d h igh order compact flowfie ld dependent variation (HOC-FDV) s cheme are tes ted. The FDV s cheme is us ed for time dis c retization and the fourth-order compact Pade scheme is us ed for s patial derivatives. The s olution procedures c o n s is t of a number of tri-diagonal matrix operations and produce an efficient s olver. The comparis ons are performed u s in g one dimens ional nonlinear vis cous Burgers equation to demons trate the accuracy and the convergence characteris tics o f the high-resolution s chemes. The numerical results s how that HOC-FDV is highly accurate in co mparis on with analytical and with other higher order schemes

    Higher Order Compact-Flowfield Dependent Variation (HOC-FDV) solution of one-dimensional problems

    No full text
    In this paper, a novel higher order accurate scheme, namely high order compact flowfield dependent variation (HOC-FDV) method has been used to solve one-dimensional problems. The method is fourth order accurate in space and third order accurate in time. Four numerical problems; the nonlinear viscous Burger’s equation, transient Couette flow, the shock tube (Sod problem) and the interaction of two blast waves are solved to test the accuracy and the ability of the scheme to capture shock waves and contact discontinuities. The solution procedure consists of tri-diagonal matrix operations and produces an efficient solver. The results are compared with analytical solutions, the original FDV method, and other standard second order methods. The results also show that HOC-FDV scheme provides more accurate results and gives excellent shock capturing capabilities

    Corn: Its Structure, Polymer, Fiber, Composite, Properties, and Applications

    No full text
    Biocomposite materials have a significant function in saving the environment by replacing artificial plastic materials with natural substances. They have been enrolled in many applications, such as housing, automotive engine components, aerospace and military products, electronic and circuit board components, and oil and gas equipment. Therefore, continuous studies have been employed to improve their mechanical, thermal, physical properties. In this research, we conduct a comprehensive review about corn fiber and corn starch-based biocomposite. The results gained from previous studies were compared and discussed. Firstly, the chemical, thermal, and mechanical properties of cornstarch-based composite were discussed. Then, the effects of various types of plasticizers on the flexibility of the cornstarch-based composite were addressed. The effects of chemical treatments on the properties of biocomposite using different cross-linking agents were discussed. The corn fiber surface treatment to enhance interfacial adhesion between natural fiber and polymeric matrix also were addressed. Finally, morphological characterization, crystallinity degree, and measurement of vapor permeability, degradation, and uptake of water were discussed. The mechanical, thermal, and water resistance properties of corn starch and fibers-based biopolymers show a significant improvement through plasticizing, chemical treatment, grafting, and cross-linker agent procedures, which expands their potential applications

    Effect of Various Plasticizers in Different Concentrations on Physical, Thermal, Mechanical, and Structural Properties of Wheat Starch-Based Films

    Get PDF
    Biocomposite materials are essential for environmental protection, as they have the ability of substituting synthetic plastic with natural materials. This work investigated how different plasticizers (Glycerol (G), Fructose (F), Sorbitol (S), and Urea (U)) affect the morphological, mechanical, thermal, and physical characteristics of films made of wheat starch at various concentrations (0%, 15%, 25%, and 35%). Plasticizers were added to improve the flexibility and homogeneity of the wheat starch-based bioplastic. Control film exhibited high tensile strength (38.7 MPa) with low elongation (1.9%). However, films plasticized with 35% sorbitol showed the highest elongation, which was 60.7% at break. At 35% of all plasticizers, fructose showed the highest tensile strength, with 7.6 MPa. The addition of different plasticizers shows improvement in water resistance; films plasticized with glycerol had the lowest water absorption at 35% fructose (187.4%) and also showed coherent surfaces. Glycerol, sorbitol, and urea films showed a higher mass loss compared to fructose films. Fructose showed the highest performance after the analysis of the results, with low water absorption, water content, and mass loss and with high mechanical performance at 35% of fructose. SEM images show that the addition of fructose and glycerol improves the surface homogenate, while sorbitol and urea have a less compact structure with large pores
    corecore