136 research outputs found

    Efficient coupling of photons to a single molecule and the observation of its resonance fluorescence

    Full text link
    Single dye molecules at cryogenic temperatures display many spectroscopic phenomena known from free atoms and are thus promising candidates for fundamental quantum optical studies. However, the existing techniques for the detection of single molecules have either sacrificed the information on the coherence of the excited state or have been inefficient. Here we show that these problems can be addressed by focusing the excitation light near to the absorption cross section of a molecule. Our detection scheme allows us to explore resonance fluorescence over 9 orders of magnitude of excitation intensity and to separate its coherent and incoherent parts. In the strong excitation regime, we demonstrate the first observation of the Mollow triplet from a single solid-state emitter. Under weak excitation we report the detection of a single molecule with an incident power as faint as 150 attoWatt, paving the way for studying nonlinear effects with only a few photons.Comment: 6 figure

    Optical detection of single non-absorbing molecules using the surface plasmon of a gold nanorod

    Full text link
    Current optical detection schemes for single molecules require light absorption, either to produce fluorescence or direct absorption signals. This severely limits the range of molecules that can be detected, because most molecules are purely refractive. Metal nanoparticles or dielectric resonators detect non-absorbing molecules by a resonance shift in response to a local perturbation of the refractive index, but neither has reached single-protein sensitivity. The most sensitive plasmon sensors to date detect single molecules only when the plasmon shift is amplified by a highly polarizable label or by a localized precipitation reaction on the particle's surface. Without amplification, the sensitivity only allows for the statistical detection of single molecules. Here we demonstrate plasmonic detection of single molecules in realtime, without the need for labeling or amplification. We monitor the plasmon resonance of a single gold nanorod with a sensitive photothermal assay and achieve a ~ 700-fold increase in sensitivity compared to state-of-the-art plasmon sensors. We find that the sensitivity of the sensor is intrinsically limited due to spectral diffusion of the SPR. We believe this is the first optical technique that detects single molecules purely by their refractive index, without any need for photon absorption by the molecule. The small size, bio-compatibility and straightforward surface chemistry of gold nanorods may open the way to the selective and local detection of purely refractive proteins in live cells

    Interferometric signatures of single molecules

    Get PDF
    We built an, interferometer where one of the two slits of a classical Young's setup is replaced by a single molecule embedded in a solid matrix. This enabled direct measurement of the first order coherence of the 0-0 single-molecule emission, which at high excitation powers proves to be split in coherent and incoherent parts. We demonstrate an order of magnitude higher precision in axial localization of single molecules in comparison with that of confocal microscopy. These experiments open a possibility for single-molecule holography. Detection of single molecules with low luminescence quantum yields could be another application of this technique

    Light induced single molecule frequency shift

    Get PDF
    Alight induced frequency shift of the 0-0 line was measured in two-photon excitation spectra of single diphenyloctatetraene molecules doped in a crystal matrix. The shifts were proportional to the laser power with a slope of about 600 MHz/W when the laser beam of about 300 mW power was focused to a diameter of 2 mu m. Significantly, the observed line broadenings were an order of magnitude smaller than the shifts. The effect is ascribed mainly to a ''fast'' energy exchange between a local vibration and thermal phonons created by the third harmonic C-H band absorption in the matrix, and partially to an ac Stark shift

    Plasmon polaritons of metallic nanowires for controlling submicron propagation of light

    Get PDF
    Abstract: The optical resonances of individual plasmonic dimer antennas are investigated using confocal darkfield spectroscopy. Experiments on an array of antennas with varying arm lengths and interparticle gap sizes show large spectral shifts of the plasmon modes due to a combination of geometrical resonances and plasmon hybridization. The resonances of the coupled-dimer antennas are considerably broadened compared to those of single nanorods, which is attributed to a superradiant damping of the coupled antenna modes. The scattering spectra are compared with electrodynamic model calculations that demonstrate both the near-field and far-field characteristics of a half-wave antenna

    Spectral hole burning: examples from photosynthesis

    Get PDF
    The optical spectra of photosynthetic pigment–protein complexes usually show broad absorption bands, often consisting of a number of overlapping, ‘hidden’ bands belonging to different species. Spectral hole burning is an ideal technique to unravel the optical and dynamic properties of such hidden species. Here, the principles of spectral hole burning (HB) and the experimental set-up used in its continuous wave (CW) and time-resolved versions are described. Examples from photosynthesis studied with hole burning, obtained in our laboratory, are then presented. These examples have been classified into three groups according to the parameters that were measured: (1) hole widths as a function of temperature, (2) hole widths as a function of delay time and (3) hole depths as a function of wavelength. Two examples from light-harvesting (LH) 2 complexes of purple bacteria are given within the first group: (a) the determination of energy-transfer times from the chromophores in the B800 ring to the B850 ring, and (b) optical dephasing in the B850 absorption band. One example from photosystem II (PSII) sub-core complexes of higher plants is given within the second group: it shows that the size of the complex determines the amount of spectral diffusion measured. Within the third group, two examples from (green) plants and purple bacteria have been chosen for: (a) the identification of ‘traps’ for energy transfer in PSII sub-core complexes of green plants, and (b) the uncovering of the lowest k = 0 exciton-state distribution within the B850 band of LH2 complexes of purple bacteria. The results prove the potential of spectral hole burning measurements for getting quantitative insight into dynamic processes in photosynthetic systems at low temperature, in particular, when individual bands are hidden within broad absorption bands. Because of its high-resolution wavelength selectivity, HB is a technique that is complementary to ultrafast pump–probe methods. In this review, we have provided an extensive bibliography for the benefit of scientists who plan to make use of this valuable technique in their future research
    corecore