3,207 research outputs found

    Choptuik scaling in null coordinates

    Get PDF
    A numerical simulation is performed of the gravitational collapse of a spherically symmetric scalar field. The algorithm uses the null initial value formulation of the Einstein-scalar equations, but does {\it not} use adaptive mesh refinement. A study is made of the critical phenomena found by Choptuik in this system. In particular it is verified that the critical solution exhibits periodic self-similarity. This work thus provides a simple algorithm that gives verification of the Choptuik results.Comment: latex (revtex), 6 figures included in the fil

    Exact solution for scalar field collapse

    Full text link
    We give an exact spherically symmetric solution for the Einstein-scalar field system. The solution may be interpreted as an inhomogeneous dynamical scalar field cosmology. The spacetime has a timelike conformal Killing vector field and is asymptotically conformally flat. It also has black or white hole-like regions containing trapped surfaces. We describe the properties of the apparent horizon and comment on the relevance of the solution to the recently discovered critical behaviour in scalar field collapse.Comment: 10 pages(Latex) (2 figures available upon request), Alberta-Thy-4-9

    Self-gravitating Klein-Gordon fields in asymptotically Anti-de-Sitter spacetimes

    Full text link
    We initiate the study of the spherically symmetric Einstein-Klein-Gordon system in the presence of a negative cosmological constant, a model appearing frequently in the context of high-energy physics. Due to the lack of global hyperbolicity of the solutions, the natural formulation of dynamics is that of an initial boundary value problem, with boundary conditions imposed at null infinity. We prove a local well-posedness statement for this system, with the time of existence of the solutions depending only on an invariant H^2-type norm measuring the size of the Klein-Gordon field on the initial data. The proof requires the introduction of a renormalized system of equations and relies crucially on r-weighted estimates for the wave equation on asymptotically AdS spacetimes. The results provide the basis for our companion paper establishing the global asymptotic stability of Schwarzschild-Anti-de-Sitter within this system.Comment: 50 pages, v2: minor changes, to appear in Annales Henri Poincar\'

    On the Impact of Fair Best Response Dynamics

    Get PDF
    In this work we completely characterize how the frequency with which each player participates in the game dynamics affects the possibility of reaching efficient states, i.e., states with an approximation ratio within a constant factor from the price of anarchy, within a polynomially bounded number of best responses. We focus on the well known class of congestion games and we show that, if each player is allowed to play at least once and at most ÎČ\beta times any TT best responses, states with approximation ratio O(ÎČ)O(\beta) times the price of anarchy are reached after T⌈log⁥log⁥n⌉T \lceil \log \log n \rceil best responses, and that such a bound is essentially tight also after exponentially many ones. One important consequence of our result is that the fairness among players is a necessary and sufficient condition for guaranteeing a fast convergence to efficient states. This answers the important question of the maximum order of ÎČ\beta needed to fast obtain efficient states, left open by [9,10] and [3], in which fast convergence for constant ÎČ\beta and very slow convergence for ÎČ=O(n)\beta=O(n) have been shown, respectively. Finally, we show that the structure of the game implicitly affects its performances. In particular, we show that in the symmetric setting, in which all players share the same set of strategies, the game always converges to an efficient state after a polynomial number of best responses, regardless of the frequency each player moves with

    Quantum Creation of Black Hole by Tunneling in Scalar Field Collapse

    Get PDF
    Continuously self-similar solution of spherically symmetric gravitational collapse of a scalar field is studied to investigate quantum mechanical black hole formation by tunneling in the subcritical case where, classically, the collapse does not produce a black hole.Comment: t clarification of the quantization method in Sec. IV, version to appear in PR

    Critical collapse of collisionless matter - a numerical investigation

    Get PDF
    In recent years the threshold of black hole formation in spherically symmetric gravitational collapse has been studied for a variety of matter models. In this paper the corresponding issue is investigated for a matter model significantly different from those considered so far in this context. We study the transition from dispersion to black hole formation in the collapse of collisionless matter when the initial data is scaled. This is done by means of a numerical code similar to those commonly used in plasma physics. The result is that for the initial data for which the solutions were computed, most of the matter falls into the black hole whenever a black hole is formed. This results in a discontinuity in the mass of the black hole at the onset of black hole formation.Comment: 22 pages, LaTeX, 7 figures (ps-files, automatically included using psfig

    On Linear Congestion Games with Altruistic Social Context

    Full text link
    We study the issues of existence and inefficiency of pure Nash equilibria in linear congestion games with altruistic social context, in the spirit of the model recently proposed by de Keijzer {\em et al.} \cite{DSAB13}. In such a framework, given a real matrix Γ=(γij)\Gamma=(\gamma_{ij}) specifying a particular social context, each player ii aims at optimizing a linear combination of the payoffs of all the players in the game, where, for each player jj, the multiplicative coefficient is given by the value γij\gamma_{ij}. We give a broad characterization of the social contexts for which pure Nash equilibria are always guaranteed to exist and provide tight or almost tight bounds on their prices of anarchy and stability. In some of the considered cases, our achievements either improve or extend results previously known in the literature

    Development of probabilistic models for quantitative pathway analysis of plant pest introduction for the EU territory

    Get PDF
    This report demonstrates a probabilistic quantitative pathway analysis model that can be used in risk assessment for plant pest introduction into EU territory on a range of edible commodities (apples, oranges, stone fruits and wheat). Two types of model were developed: a general commodity model that simulates distribution of an imported infested/infected commodity to and within the EU from source countries by month; and a consignment model that simulates the movement and distribution of individual consignments from source countries to destinations in the EU. The general pathway model has two modules. Module 1 is a trade pathway model, with a Eurostat database of five years of monthly trade volumes for each specific commodity into the EU28 from all source countries and territories. Infestation levels based on interception records, commercial quality standards or other information determine volume of infested commodity entering and transhipped within the EU. Module 2 allocates commodity volumes to processing, retail use and waste streams and overlays the distribution onto EU NUTS2 regions based on population densities and processing unit locations. Transfer potential to domestic host crops is a function of distribution of imported infested product and area of domestic production in NUTS2 regions, pest dispersal potential, and phenology of susceptibility in domestic crops. The consignment model covers the several routes on supply chains for processing and retail use. The output of the general pathway model is a distribution of estimated volumes of infested produce by NUTS2 region across the EU28, by month or annually; this is then related to the accessible susceptible domestic crop. Risk is expressed as a potential volume of infested fruit in potential contact with an area of susceptible domestic host crop. The output of the consignment model is a volume of infested produce retained at each stage along the specific consignment trade chain

    Response of Thompson Seedless grapes to prebloom thinning

    Get PDF
    Paired treatments with and without application of GA at bloom were applied to Thompson Seedless vines that were cluster-thinned at prebloom, and berrythinned at shatter, cluster-thinned and berry-thinned at prebloom, or cluster-thinned and berry-thinned at shatter stage following bloom. Unsprayed clusters from vines that were cluster-thinned at prebloom or cluster- and berrythinned at prebloom stage were very compact. All combinations of thinning that included applications of GA at bloom produced clusters that were looser than the corresponding unsprayed clusters. GA increased berry size, and clusters that received GA usually had fewer shot berries than did corresponding unsprayed clusters. Prebloom thinning increased the number of berries per cm. of lateral, but applications of GA at bloom greatly decreased the amount of set. A reduction of flower shatter occurred as a results of prebloom thinning

    General K=-1 Friedman-Lema\^itre models and the averaging problem in cosmology

    Full text link
    We introduce the notion of general K=-1 Friedman-Lema\^itre (compact) cosmologies and the notion of averaged evolution by means of an averaging map. We then analyze the Friedman-Lema\^itre equations and the role of gravitational energy on the universe evolution. We distinguish two asymptotic behaviors: radiative and mass gap. We discuss the averaging problem in cosmology for them through precise definitions. We then describe in quantitative detail the radiative case, stressing on precise estimations on the evolution of the gravitational energy and its effect in the universe's deceleration. Also in the radiative case we present a smoothing property which tells that the long time H^{3} x H^{2} stability of the flat K=-1 FL models implies H^{i+1} x H^{i} stability independently of how big the initial state was in H^{i+1} x H^{i}, i.e. there is long time smoothing of the space-time. Finally we discuss the existence of initial "big-bang" states of large gravitational energy, showing that there is no mathematical restriction to assume it to be low at the beginning of time.Comment: Revised version. 32 pages, 1 figur
    • 

    corecore