3,357 research outputs found

    Pseudogenes as an alternative source of natural antisense transcripts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Naturally occurring antisense transcripts (NATs) are non-coding RNAs that may regulate the activity of sense transcripts to which they bind because of complementarity. NATs that are not located in the gene they regulate (trans-NATs) have better chances to evolve than cis-NATs, which is evident when the sense strand of the cis-NAT is part of a protein coding gene. However, the generation of a trans-NAT requires the formation of a relatively large region of complementarity to the gene it regulates.</p> <p>Results</p> <p>Pseudogene formation may be one evolutionary mechanism that generates trans-NATs to the parental gene. For example, this could occur if the parental gene is regulated by a cis-NAT that is copied as a trans-NAT in the pseudogene. To support this we identified human pseudogenes with a trans-NAT to the parental gene in their antisense strand by analysis of the database of expressed sequence tags (ESTs). We found that the mutations that appeared in these trans-NATs after the pseudogene formation do not show the flat distribution that would be expected in a non functional transcript. Instead, we found higher similarity to the parental gene in a region nearby the 3' end of the trans-NATs.</p> <p>Conclusions</p> <p>Our results do not imply a functional relation of the trans-NAT arising from pseudogenes over their respective parental genes but add evidence for it and stress the importance of duplication mechanisms of genetic material in the generation of non-coding RNAs. We also provide a plausible explanation for the large transcripts that can be found in the antisense strand of some pseudogenes.</p

    Identification of novel stem cell markers using gap analysis of gene expression data

    Get PDF
    A method for the detection of marker genes in large heterogeneous collections of gene expression data is described and applied to DNA microarray data generated from 83 mouse stem cell-related samples

    Amplification of the Gene Ontology annotation of Affymetrix probe sets

    Get PDF
    BACKGROUND: The annotations of Affymetrix DNA microarray probe sets with Gene Ontology terms are carefully selected for correctness. This results in very accurate but incomplete annotations which is not always desirable for microarray experiment evaluation. RESULTS: Here we present a protocol to amplify the set of Gene Ontology annotations associated to Affymetrix DNA microarray probe sets using information from related databases. CONCLUSION: Predicted novel annotations and the evidence producing them can be accessed at Probe2GO: . Scripts are available on demand

    The pseudogenes of Mycobacterium leprae reveal the functional relevance of gene order within operons

    Get PDF
    Almost 50 years following the discovery of the prokaryotic operon, the functional relevance of gene order within operons remains unclear. In this work, we take advantage of the eroded genome of Mycobacterium leprae to add evidence supporting the notion that functionally less important genes have a tendency to be located at the end of its operons. M. leprae’s genome includes 1133 pseudogenes and 1614 protein-coding genes and can be compared with the close genome of M. tuberculosis. Assuming M. leprae’s pseudogenes to represent dispensable genes, we have studied the position of these pseudogenes in the operons of M. leprae and of their orthologs in M. tuberculosis. We observed that both tend to be located in the 3′ (downstream) half of the operon (P-values of 0.03 and 0.18, respectively). Analysis of pseudogenes in all available prokaryotic genomes confirms this trend (P-value of 7.1 × 10−7). In a complementary analysis, we found a significant tendency for essential genes to be located at the 5′ (upstream) half of the operon (P-value of 0.006). Our work provides an indication that, in prokarya, functionally less important genes have a tendency to be located at the end of operons, while more relevant genes tend to be located toward operon starts

    ChIP on SNP-chip for genome-wide analysis of human histone H4 hyperacetylation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>SNP microarrays are designed to genotype Single Nucleotide Polymorphisms (SNPs). These microarrays report hybridization of DNA fragments and therefore can be used for the purpose of detecting genomic fragments.</p> <p>Results</p> <p>Here, we demonstrate that a SNP microarray can be effectively used in this way to perform chromatin immunoprecipitation (ChIP) on chip as an alternative to tiling microarrays. We illustrate this novel application by mapping whole genome histone H4 hyperacetylation in human myoblasts and myotubes. We detect clusters of hyperacetylated histone H4, often spanning across up to 300 kilobases of genomic sequence. Using complementary genome-wide analyses of gene expression by DNA microarray we demonstrate that these clusters of hyperacetylated histone H4 tend to be associated with expressed genes.</p> <p>Conclusion</p> <p>The use of a SNP array for a ChIP-on-chip application (ChIP on SNP-chip) will be of great value to laboratories whose interest is the determination of general rules regarding the relationship of specific chromatin modifications to transcriptional status throughout the genome and to examine the asymmetric modification of chromatin at heterozygous loci.</p

    Recent developments in StemBase: a tool to study gene expression in human and murine stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Currently one of the largest online repositories for human and mouse stem cell gene expression data, StemBase was first designed as a simple web-interface to DNA microarray data generated by the Canadian Stem Cell Network to facilitate the discovery of gene functions relevant to stem cell control and differentiation.</p> <p>Findings</p> <p>Since its creation, StemBase has grown in both size and scope into a system with analysis tools that examine either the whole database at once, or slices of data, based on tissue type, cell type or gene of interest. As of September 1, 2008, StemBase contains gene expression data (microarray and Serial Analysis of Gene Expression) from 210 stem cell samples in 60 different experiments.</p> <p>Conclusion</p> <p>StemBase can be used to study gene expression in human and murine stem cells and is available at <url>http://www.stembase.ca</url>.</p

    CellFinder: a cell data repository

    Get PDF
    CellFinder (http://www.cellfinder.org) is a comprehensive one-stop resource for molecular data characterizing mammalian cells in different tissues and in different development stages. It is built from carefully selected data sets stemming from other curated databases and the biomedical literature. To date, CellFinder describes 3394 cell types and 50 951 cell lines. The database currently contains 3055 microscopic and anatomical images, 205 whole-genome expression profiles of 194 cell/tissue types from RNA-seq and microarrays and 553 905 protein expressions for 535 cells/tissues. Text mining of a corpus of >2000 publications followed by manual curation confirmed expression information on ∼900 proteins and genes. CellFinder's data model is capable to seamlessly represent entities from single cells to the organ level, to incorporate mappings between homologous entities in different species and to describe processes of cell development and differentiation. Its ontological backbone currently consists of 204 741 ontology terms incorporated from 10 different ontologies unified under the novel CELDA ontology. CellFinder's web portal allows searching, browsing and comparing the stored data, interactive construction of developmental trees and navigating the partonomic hierarchy of cells and tissues through a unique body browser designed for life scientists and clinicians

    Gene function in early mouse embryonic stem cell differentiation

    Get PDF
    BACKGROUND: Little is known about the genes that drive embryonic stem cell differentiation. However, such knowledge is necessary if we are to exploit the therapeutic potential of stem cells. To uncover the genetic determinants of mouse embryonic stem cell (mESC) differentiation, we have generated and analyzed 11-point time-series of DNA microarray data for three biologically equivalent but genetically distinct mESC lines (R1, J1, and V6.5) undergoing undirected differentiation into embryoid bodies (EBs) over a period of two weeks. RESULTS: We identified the initial 12 hour period as reflecting the early stages of mESC differentiation and studied probe sets showing consistent changes of gene expression in that period. Gene function analysis indicated significant up-regulation of genes related to regulation of transcription and mRNA splicing, and down-regulation of genes related to intracellular signaling. Phylogenetic analysis indicated that the genes showing the largest expression changes were more likely to have originated in metazoans. The probe sets with the most consistent gene changes in the three cell lines represented 24 down-regulated and 12 up-regulated genes, all with closely related human homologues. Whereas some of these genes are known to be involved in embryonic developmental processes (e.g. Klf4, Otx2, Smn1, Socs3, Tagln, Tdgf1), our analysis points to others (such as transcription factor Phf21a, extracellular matrix related Lama1 and Cyr61, or endoplasmic reticulum related Sc4mol and Scd2) that have not been previously related to mESC function. The majority of identified functions were related to transcriptional regulation, intracellular signaling, and cytoskeleton. Genes involved in other cellular functions important in ESC differentiation such as chromatin remodeling and transmembrane receptors were not observed in this set. CONCLUSION: Our analysis profiles for the first time gene expression at a very early stage of mESC differentiation, and identifies a functional and phylogenetic signature for the genes involved. The data generated constitute a valuable resource for further studies. All DNA microarray data used in this study are available in the StemBase database of stem cell gene expression data [1] and in the NCBI's GEO database

    Stepwise reprogramming of liver cells to a pancreas progenitor state by the transcriptional regulator Tgif2

    Get PDF
    The development of a successful lineage reprogramming strategy of liver to pancreas holds promises for the treatment and potential cure of diabetes. The liver is an ideal tissue source for generating pancreatic cells, because of its close developmental origin with the pancreas and its regenerative ability. Yet, the molecular bases of hepatic and pancreatic cellular plasticity are still poorly understood. Here, we report that the TALE homeoprotein TGIF2 acts as a developmental regulator of the pancreas versus liver fate decision and is sufficient to elicit liver-to-pancreas fate conversion both ex vivo and in vivo. Hepatocytes expressing Tgif2 undergo extensive transcriptional remodelling, which represses the original hepatic identity and, over time, induces a pancreatic progenitor-like phenotype. Consistently, in vivo forced expression of Tgif2 activates pancreatic progenitor genes in adult mouse hepatocytes. This study uncovers the reprogramming activity of TGIF2 and suggests a stepwise reprogramming paradigm, whereby a ‘lineage-restricted’ dedifferentiation step precedes the identity switch

    Plasmonic/Magnetic Multifunctional nanoplatform for Cancer Theranostics

    Get PDF
    Cancer is the second leading disease which causes major mortality and morbidity worldwide1 . In cancer therapy, it is crucial to increase the drug specificity and drug efficacy to minimise or completely eradicate significant side-effects on patients2 . Cancer nanotherapeutics overcome many serious drawbacks of chemotherapy such as non-specific targeting, lower efficacy, insolubility of drug moieties in water and oral bioavailability3 . Accordingly, Superparamagnetic Iron Oxide Nanoparticles (SPIONs) are exploited as an important nanomaterial for cancer detection as well as therapeutics4 . Such magnetic nanoparticles (NPs) gained its momentum because of their single-domain ordering along with their large surface to volume ratio (providing large surface area for attachment of biological entities). Hence, this property makes them a suitable candidate as a contrast agent, drug-carrying cargo and hyperthermal agent5
    corecore