5,656 research outputs found
Retrieval Properties of Hopfield and Correlated Attractors in an Associative Memory Model
We examine a previouly introduced attractor neural network model that
explains the persistent activities of neurons in the anterior ventral temporal
cortex of the brain. In this model, the coexistence of several attractors
including correlated attractors was reported in the cases of finite and
infinite loading. In this paper, by means of a statistical mechanical method,
we study the statics and dynamics of the model in both finite and extensive
loading, mainly focusing on the retrieval properties of the Hopfield and
correlated attractors. In the extensive loading case, we derive the evolution
equations by the dynamical replica theory. We found several characteristic
temporal behaviours, both in the finite and extensive loading cases. The
theoretical results were confirmed by numerical simulations.Comment: 12 pages, 7 figure
Finite Size Scaling of the 2D Six-Clock model
We investigate the isotropic-anisotropic phase transition of the
two-dimensional XY model with six-fold anisotropy, using Monte Carlo
renormalization group method. The result indicates difficulty of observing
asymptotic critical behavior in Monte Carlo simulations, owing to the marginal
flow at the fixed point.Comment: Short note. revtex, 6 pages, 3 figures. To appear in J. Phys. Soc.
Jpn. Vol.70 No. 2 (Feb 2001
Charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4: Cooperative effects of electron correlations and lattice distortions
Combined effects of electron correlations and lattice distortions are
investigated on the charge ordering in \theta-(BEDT-TTF)2RbZn(SCN)4
theoretically in a two-dimensional 3/4-filled extended Hubbard model with
electron-lattice couplings. It is known that this material undergoes a phase
transition from a high-symmetry metallic state to a low-symmetry insulating
state with a horizontal-stripe charge order (CO) by lowering temperature. By
means of the exact-diagonalization method, we show that electron-phonon
interactions are crucial to stabilize the horizontal-stripe CO and to realize
the low-symmetry crystal structure.Comment: 7 peges, 7 figures, accepted for publication in Phys. Rev.
Proposal for an interference experiment to test the applicability of quantum theory to event-based processes
We analyze a single-particle Mach-Zehnder interferometer experiment in which
the path length of one arm may change (randomly or systematically) according to
the value of an external two-valued variable , for each passage of a
particle through the interferometer. Quantum theory predicts an interference
pattern that is independent of the sequence of the values of . On the other
hand, corpuscular models that reproduce the results of quantum optics
experiments carried out up to this date show a reduced visibility and a shift
of the interference pattern depending on the details of the sequence of the
values of . The proposed experiment will show that: (1) it can be described
by quantum theory, and thus not by the current corpuscular models, or (2) it
cannot be described by quantum theory but can be described by the corpuscular
models or variations thereof, or (3) it can neither be described by quantum
theory nor by corpuscular models. Therefore, the proposed experiment can be
used to determine to what extent quantum theory provides a description of
observed events beyond the usual statistical level.Comment: Accepted for publication in J. Phys. Soc. Jp
Meteor radiant mapping with MU radar
The radiant point mapping of meteor showers with the MU radar by using a modified mapping method originally proposed by Morton and Jones (1982) was carried out. The modification is that each meteor echo was weighted by using the beam pattern of the radar system. A preliminary result of the radiant point mapping of the Geminids meteor shower in 1989 is presented
- …