34,316 research outputs found

    Configuration spaces of points on the circle and hyperbolic Dehn fillings

    Get PDF
    A purely combinatorial compactification of the configuration space of n (>4) distinct points with equal weights in the real projective line was introduced by M. Yoshida. We geometrize it so that it will be a real hyperbolic cone-manifold of finite volume with dimension n-3. Then, we vary weights for points. The geometrization still makes sense and yields a deformation. The effectivity of deformations arisen in this manner will be locally described in the existing deformation theory of hyperbolic structures when n-3 = 2, 3.Comment: 22 pages, to appear in Topolog

    Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot

    Full text link
    A numerical renormalization-group study of the conductance through a quantum wire side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the Kondo-regime temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the flow through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When the fluxes through the two paths are comparable, the conductance is nearly temperature-independent in the Kondo regime, and a Fano antiresonance in the fixed-temperature plot of the conductance as a function of the dot energy signals interference. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.Comment: 12 pages, with 9 figures. Submitted to PR

    Computational Modeling, Visualization, and Control of 2-D and 3-D Grasping under Rolling Contacts

    Get PDF
    This chapter presents a computational methodology for modeling 2-dimensional grasping of a 2-D object by a pair of multi-joint robot fingers under rolling contact constraints. Rolling contact constraints are expressed in a geometric interpretation of motion expressed with the aid of arclength parameters of the fingertips and object contours with an arbitrary geometry. Motions of grasping and object manipulation are expressed by orbits that are a solution to the Euler-Lagrange equation of motion of the fingers/object system together with a set of first-order differential equations that update arclength parameters. This methodology is then extended to mathematical modeling of 3-dimensional grasping of an object with an arbitrary shape. Based upon the mathematical model of 2-D grasping, a computational scheme for construction of numerical simulators of motion under rolling contacts with an arbitrary geometry is presented, together with preliminary simulation results. The chapter is composed of the following three parts. Part 1 Modeling and Control of 2-D Grasping under Rolling Contacts between Arbitrary Smooth Contours Authors: S. Arimoto and M. Yoshida Part 2 Simulation of 2-D Grasping under Physical Interaction of Rolling between Arbitrary Smooth Contour Curves Authors: M. Yoshida and S. Arimoto Part 3 Modeling of 3-D Grasping under Rolling Contacts between Arbitrary Smooth Surfaces Authors: S. Arimoto, M. Sekimoto, and M. Yoshid

    Precise measurement of HFS of positronium

    Full text link
    The ground state hyperfine splitting in positronium, ΔHFS\Delta _{\mathrm{HFS}}, is sensitive to high order corrections of QED. A new calculation up to O(α3)O(\alpha ^3) has revealed a 3.9σ3.9 \sigma discrepancy between the QED prediction and the experimental results. This discrepancy might either be due to systematic problems in the previous experiments or to contributions beyond the Standard Model. We propose an experiment to measure ΔHFS\Delta_{\mathrm{HFS}} employing new methods designed to remedy the systematic errors which may have affected the previous experiments. Our experiment will provide an independent check of the discrepancy. The measurement is in progress and a preliminary result of ΔHFS=203.399±0.029GHz(143ppm)\Delta_{\mathrm{HFS}} = 203.399 \pm 0.029 \mathrm{GHz} (143 \mathrm{ppm}) has been obtained. A measurement with a precision of O(1) ppm is expected within a few years.Comment: 5 pages, 6 figures, contributed to POSMOL 2009, will be published in J. Phys.: Conf. Serie

    Measurement of radon concentrations at Super-Kamiokande

    Full text link
    Radioactivity from radon is a major background for observing solar neutrinos at Super-Kamiokande. In this paper, we describe the measurement of radon concentrations at Super-Kamiokande, the method of radon reduction, and the radon monitoring system. The measurement shows that the current low-energy event rate between 5.0 MeV and 6.5 MeV implies a radon concentration in the Super-Kamiokande water of less than 1.4 mBq/m3^3.Comment: 11 pages, 4 figure

    Calibration of Super-Kamiokande Using an Electron Linac

    Get PDF
    In order to calibrate the Super-Kamiokande experiment for solar neutrino measurements, a linear accelerator (LINAC) for electrons was installed at the detector. LINAC data were taken at various positions in the detector volume, tracking the detector response in the variables relevant to solar neutrino analysis. In particular, the absolute energy scale is now known with less than 1 percent uncertainty.Comment: 24 pages, 16 figures, Submitted to NIM

    To respond or not to respond - a personal perspective of intestinal tolerance

    Get PDF
    For many years, the intestine was one of the poor relations of the immunology world, being a realm inhabited mostly by specialists and those interested in unusual phenomena. However, this has changed dramatically in recent years with the realization of how important the microbiota is in shaping immune function throughout the body, and almost every major immunology institution now includes the intestine as an area of interest. One of the most important aspects of the intestinal immune system is how it discriminates carefully between harmless and harmful antigens, in particular, its ability to generate active tolerance to materials such as commensal bacteria and food proteins. This phenomenon has been recognized for more than 100 years, and it is essential for preventing inflammatory disease in the intestine, but its basis remains enigmatic. Here, I discuss the progress that has been made in understanding oral tolerance during my 40 years in the field and highlight the topics that will be the focus of future research
    corecore