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A purely combinatorial compactification of the configuration space of n (*5) distinct points with equal weights in
the real projective line was introduced by M. Yoshida. We geometrize it so that it will be a real hyperbolic
cone-manifold of finite volume with dimension n!3. Then, we vary weights for points. The geometrization still
makes sense and yields a deformation. The effectivity of deformations arisen in this manner will be locally
described in the existing deformation theory of hyperbolic structures when n!3"2, 3. ( 1999 Elsevier Science
Ltd. All rights reserved.

1. INTRODUCTION

Let X(n) be a space of configurations of n distinct points in the real projective line RP1 up to
projective automorphisms. X(n) can be expressed by the point set,

X (n)"((RP1)n!D)/PGL(2, R)

where D is the big diagonal set,

D"M(a
1
,2, a

n
)3(RP)n D a

i
"a

j
for some iOjN

and PGL(2, R) acts on (RP1)n diagonally. We assume that the number of points is at least
five throughout this paper (for the case n"4, see [7]).

There are two obvious observations. X (n) is not connected since we are not allowed to
have collisions of points. Each component can be labeled by a circular permutation of
n letters up to reflection. In particular, the number of connected components is (n!1) !/2.
Also a configuration can be normalized by sending three consecutive points to M0, 1, RN so
that the other points lie in the open unit interval (0, 1). Hence, each component of X(n) can
be identified with the set of ordered n!3 points in (0, 1), and in particular is homeomorphic
to a cell of dimension n!3.

M. Yoshida introduced a purely combinatorial compactification X
Y
(n) of X(n) in [12]

by deleting the following smaller set D
*

instead of the big diagonal D,

D
*
"M(a

1
,2 , a

n
)3(RP1)n D a

i1
"a

i2
"2"a

i*(n`1)@2+
for some distict i

1
,2 , i

*(n`1)@2+
N

where [x] denotes the maximal integer which does not exceed x. When n is even, X
Y
(n) is

not compact in fact, but there is a natural combinatorial interpretation of the ends.
On the other hand, Thurston gave a family of incomplete complex hyperbolic metrics on

the space of configurations of n distinct points on the complex projective line CP1 in [10].
Their completions become complex hyperbolic cone-manifolds of complex dimension n!3.

By considering the real slice of Thurston’s complex hyperbolization, we can give
a natural real hyperbolic polyhedral structure on each component of X (n). Moreover, the
boundary of each polyhedron will be coded by degenerate configurations so that the
hyperbolization gives rise to a geometric identification of pairs of faces on the components.
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The first purpose of this paper is to show that such identifications make X(n) lie as an open
dense subset in a connected real hyperbolic cone-manifold homeomorphic to Yoshida’s
compactification in Theorem 1.

We will see more precisely that the resultant of face identification is compact if n is odd,
and noncompact of finite volume otherwise. If n)6, it is nonsingular. If n*7, it is singular
and its cone angle h

n
along a codimension two singular stratum satisfies the identity

cos (h
n
/6)"1/(2cos (2n/n)). Hence, h

n
lies in (n, 2n) and approaches 2n as nPR.

Some related works on geometric interpretation of X(n) from more analytic viewpoints
can be found in [2, 11, 13].

The second purpose of this paper is to relate our geometrization with the existing
deformation theory of hyperbolic structures by relaxing the construction when n"5, 6. The
discussion for the first purpose is based on the hypothesis that the points on a configuration
all have equal weights. We will see what happens if we perturb weights of points slightly.

When n"5, the geometrized configuration space is a nonorientable hyperbolic surface
homeomorphic to a connected sum of five copies of the projective plane, d5RP2. We will
assign a deformed hyperbolic structure on d5RP2 to each perturbation of weights. The
freedom for varying weights on five points is of four-dimensional, and the space of marked
hyperbolic structures on d5RP2 is homeomorphic to R9. We will show that this assignment
is differentiable and that the derivative at equal weights has full rank in Theorem 2.

When n"6, the geometrized configuration space is a complete hyperbolic 3-manifold of
finite volume with ten cusps. A small perturbation gives rise to not a deformation in the
usual sense, but a resultant of hyperbolic Dehn filling. The space of hyperbolic Dehn fillings
of a complete hyperbolic 3-manifold can be locally identified with the space of representa-
tions of a fundamental group up to conjugacy. It has a structure of an algebraic variety of
complex dimension"the number of cusps, and is smooth at the complete structure. Hence,
in our case, the space of Dehn fillings is locally biholomorphic to C10. Then we will show
again that the assignment is differentiable and the derivative at equal weights has full rank
in Theorem 3.

We carry out the geometrization in the next section, and relate it with the deformation
theory in the section after.

2. GEOMETRIZATION

2.1. Hyperbolic polyhedral structure on X (n)

To geometrize X(n), we consider Euclidean n-gons with vertices marked by integers
from 1 to n, where the marking may not be cyclically monotone. Let X

n, c
be the set of all

marked equiangular n-gons up to mark preserving (possibly orientation reversing) congru-
ence, and X

n
a further quotient of X

n, c
by similarities.

For any a3 (RP1)n!D, we assign the unit disc in C with n points specified on the
boundary. By the Schwarz—Christoffel mapping or its complex conjugate, we can map a to
an equiangular n-gon up to mark preserving similarity—i.e. an element of X

n
. This induces

a map from X(n) to X
n
since a projective transformation on the unit disc does not change

the image of the map. It is also injective because if two configurations a and b map to the
same element of X

n, c
by fa and fb then fb ° f~1a is a mark preserving projective automorphism

of the unit disk. By the Carathéodory theorem, this map is surjective. Therefore we have
proved

LEMMA 1. ¹here is a canonical homeomorphism between X (n) and X
n
.
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The aim of this subsection is to construct a hyperbolic polyhedral structure on a com-
ponent of X(n) through the above identification by taking the real part of Thurston’s
geometrization in [10]. Similar discussions with the rest of this subsection can be found also
in [3, 6].

As we have noted in the introduction, the connected component of X (n) consists of the
configurations with a fixed circular permutation of markings up to reflection. For the
simplicity of index, we shall concentrate on the component º of X

n, c
which is labeled by

122n. Let º
s
LX

n
be the set of its mark-preserving similarity classes. Note that º

s
corres-

ponds to the component of X (n) labeled by 122n also. We identify º
s

with the set
º
1

which, by definition, consists of the set of equiangular polygons having its area one (see
Fig. 1). We describe polygons as follows.

The elements of º can be described by the vector of side lengths (x
1
, x

2
, 2, x

n
) where

x
j
is the length of the edge between the vertices marked by j and j#1. Since they represent

an equiangular n-gon, they satisfy

x
1
#x

2
f
n
#2#x

n
fn~1
n

"0

where f
n
"exp (2pi/n). We set

E
n
:"M(x

1
, x

2
, 2, x

n
) Dx

1
#x

2
f
n
#2#x

n
fn~1
n

"0N

E`
n

:"E
n
W

n
Y
j/1

Mx
j
'0N.

Note that º"E`
n
.

For each element P of E`
n
, we denote by Area(P) the area of P. It is a function from

E`
n

to R.

LEMMA 2. ¹he function Area is extended to a quadratic form of signature (1, n!3) on E
n
.

Proof. Suppose that P is an element of º. Place the edge x
n

of P on the real axis of
complex plane and extend other edges until they touch the real axis. We set edge length
y
j
, z

k
, a

l
and triangles B

s
, C

t
as in the figure (see Fig. 2). (If n is odd, then no A

n@2
appears.)

Let A be the triangle PX
s
B
s
X

t
C

t
.

Suppose that n is odd and n"2m#1. By the sine rule relatively to B
j
,

a
j

sin jh
n

"

y
j

sin h
n

"

a
j~1

#x
j

sin ( j#1)h
n

for 1)j)m!1 where h
n
"2p/n. Thus, we have

y
j
sin ( j#1)h

n
!y

j~1
sin ( j!1)h

n
"x

j
sin h

n
.

The same argument for C
j
shows that

z
j
sin ( j#1)h

n
!z

j~1
sin ( j!1)h

n
"x

n~j
sin h

n
.

If we set

w
0
:"x

n
#+

j

y
j
#+

j

z
j
,

the above equalities show that the coordinate (z
m~1

, 2, z
1
, w

0
, y

1
, 2, y

m~1
) is obtained

from (x
1
, 2 , x

n
) by a linear isomorphism.

CONFIGURATION SPACES AND HYPERBOLIC DEHN FILLINGS 499



Fig. 1. An equiangular octagon.

Fig. 2.

Since the areas of the triangles A, B
j
, C

j
are as follows,

Area A"w2
0

1

4
tan

h
n

2

Area B
j
"

1

2
y
j
(a

j~1
#x

j
) sin jh

n
"y2

j

sin jh
n
sin ( j#1)h

n
2 sin h

n

Area C
j
"

1

2
z
j
(a

n~j`1
#x

n~j
) sin jh

n
"z2

j

sin (!j)h
n
sin (!j#1)h

n
2 sin h

n

we define the new coordinate by setting

X
0
"w

0S
1

4
tan

h
n
2

½
j
"y

jS
sin jh

n
sin ( j#1)h

n
2 sin h

n

Z
j
"z

jS
sin (!j)h

n
sin (!j#1)h

n
2 sin h

n

.
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(Z
m~1

, 2, Z
1
, X

0
, ½

1
, 2, ½

m~1
) is obtained from (z

m~1
, 2, z

1
, w

0
, y

1
, 2, y

m~1
) by

a linear isomorphism. The area of the polygon is

Area"X2
0
!+

j

½2
j
!+

j

Z2
j
.

If n is even and n"2m#2, add X
m`1

:"x
m`1

J(1/4) tan h
n
/2 and (Z

m~1
, 2 , Z

1
, X

0
,

½
1
, 2, ½

m~1
, X

m`1
) is the coordinate. In this case, the area is

Area"X2
0
!X2

m`1
!+

j

½2
j
!+

j

Z2
j
.

The function Area :E`
n
PR defines a quadratic form of E

n
which we also denote by Area

and the above calculation shows that its signature is (1, n!3). K

E
n

together with Area becomes a Minkowski space. Let P
n

be the intersection
Area~1(1)WMX

0
'0N. Then P

n
is the hyperbolic space and º

1
is canonically homeomorphic

to

Area~1(1)WE`
n
"Area~1(1)W

n
Y
i/1

Mx
i
'0NLP

n
.

The region is bounded by P
n
WMx

i
"0N for i"1, 2,2 , n. Since Mx

i
"0N is a hyperplane

containing the origin in the Minkowski space E
n
, the intersection with the hyperboloidP

n
is

the hyperbolic hyperplane. It implies that:

LEMMA 3. ¹here is a canonical homeomorphism between º
1

and an interior of the
(n!3)-dimensional hyperbolic polyhedron obtained by taking closure of Area~1(1)WE`

n
.

We denote this closed hyperbolic polyhedron by *
n

and its faces corresponding to
Mx

i
"0NW*

n
by F

i
. To see some geometric properties of *

n
, we recall a lemma in hyperbolic

geometry. The Lorentz bilinear form q( , ) on the Minkowski space E
n

is defined by
a quadratic form Area by setting

q (x, y)"1
2
(Area(x#y)!Area(x)!Area(y)).

LEMMA 4 (Thurston [10, Proposition 2.4.5]). (1) ¸et p
1

and p
2

be in hyperbola P
n

and
d(p

1
, p

2
) the hyperbolic distance between p

1
and p

2
. ¹hen

cosh d (p
1
, p

2
)"q (p

1
, p

2
).

(2) ¸et n
1

and n
2

be normal vectors of the hyperplanes H
1

and H
2

in P
n
.

(a) If H
1

and H
2

intersect in P
n
, then their dihedral angle n(H

1
, H

2
) satisfies

cos n(H
1
, H

2
)"

q (n
1
, n

2
)

Jq (n
1
, n

1
) Jq (n

2
, n

2
)
.

(b) If H
1

and H
2

do not intersect in P
n
, then their shortest distance d (H

1
, H

2
) satisfies

cosh d(H
1
, H

2
)"

q (n
1
, n

2
)

Jq(n
1
, n

1
)Jq (n

2
, n

2
)
.
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Then we have

LEMMA 5. ¹he faces of *
n
intersect as follows.

(1) Di!j D*2NF
i
oF

j
,

(2) If n"5 or 6, then F
j
WF

j`1
"0,

(3) If n*7,

cos (u
n
)"

1

2 cos 2n/n
,

where u
n
is the dihedral angle between F

j
and F

j`1
.

Proof. (1) Suppose that i!j*2. We change the way we extend the edges of P to form
triangles B

i
and C

i
as we have done to get the new coordinate of E

n
. Extend two edges

adjacent to the edge x
i
and x

j
, respectively, so that we obtain an (n!2)-gon P@ (see Fig. 3).

Call the triangles B
1
, B

2
. For any linear isomorphism on E

n
whose first and second new

coordinates are ½
1
"JArea(B

1
) and ½

2
"JArea(B

2
), the quadratic form Area is written

as:

Area"(quadratic form without ½
1

and ½
2
)!½2

1
!½2

2
.

Mx
i
"0N and Mx

j
"0N in this coordinate is M½

1
"0N and M½

2
"0N, respectively, and we can

choose normal vectors by n
1
"(1, 0, 2, 0) and n

2
"(0, 1, 0, 2, 0), respectively. Therefore

q(n
i
, n

j
)"0 and F

i
is orthogonal to F

j
by Lemma 4(2).

(2) Suppose that n"5. The intersection of F
5
and F

1
must consist of (‘‘generalized’’ and

‘‘degenerate’’) equiangular pentagons as in the figure (see Fig. 4). There are two possibilities
depending on the sign of x

2
. In both cases the areas are negative so that they cannot

intersect in P
5
.

The case n"6 is similar. If we set x
i
"x

i`1
"0, then there are four patterns of

equiangular hexagons according to the sign of x
i~2

and x
i~1

. The areas all are negative.
(3) By the symmetry of *

n
we may assume that j"1. We denote Mx

i
"0N by E

i
for

i"1, 2. E
1

is equal to M½
1
"0N in the new coordinate. The n-gon with x

2
"0 is depicted

in Fig. 5.
By the sine rule for the two triangles in the figure, we have

y
1

sin 3h
n

"

y
2

sin h
n

.

The ratio of the square of the areas of two triangles are

½2
2

½2
1

"

y
2

y
1

"

1

3!4 sin2 h
n

and constant. Thus,

E
2
"M½

1
"½

2
J3!4 sin2 h

n
N.

Therefore, normal vectors of these two hyperplanes can be chosen by

n
1
"(0, 2 , 0, 1, 0, 2, 0)

n
2
"(0, 2 , 0, 1, !J3!4sin2h

n
, 2 , 0).

502 S. Kojima et al.



Fig. 3.

Fig. 4. Degenerated pentagons.

Fig. 5.

Then by Lemma 4(1), we have

cos u
n
"

q (n
1
, n

2
)

Jq(n
1
, n

1
) q(n

2
, n

2
)
"

1

2 cos h
n

. K

Remark 1. The formula in the Lemma tells us the angle:

n

u
n
(deg) K

7

36.6845

8

45

9

49.2542

10

51.8273

2

2

nPR

u
n
¦60

Therefore u
n
(60 for n"7, 8, 2 .

Remark 2. *
5

is bounded by 5 geodesics and F
i
and F

i$2
are orthogonal, i.e. a hyper-

bolic right angle pentagon. The same argument shows that *
6

is a hyperbolic trigonal
bipyramid with angles between two intersecting faces"p/2 and three ideal vertices.

2.2. Identification of the boundary of X
n
+X (n)

The number of hyperplanes Mx
i
"0N with consecutive indices which can meet on

the boundary of *
n

is at most [(n!1)/2]!1, otherwise [(n!1)/2] consecutive edges of
the corresponding equiangular n-gon degenerate so that the area cannot be positive.
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Such a degeneration corresponds to a collision of [(n#1)/2] consecutive points on the
configuration which is ruled out in Yoshida’s X

Y
(n). Thus, the boundary of *

n
corresponds

to the set of degenerate configurations added in X
Y
(n). On the other hand, our geometriz-

ation assigns not only a projective class of a configuration to each point in the interior on
*
n
, but a corresponding degenerate configuration to each point on the boundary of *

n
.

Gluing (n!1)!/2 copies of *
n
together along the faces which represent the same degenerate

configurations, and we obtain X
n

which is homeomorphic to Yoshida’s compactification.
X

n
+X(n) now lives in X

n
as an open dense subset.

We finish this section by discussing how singularities appear in X
n
by looking at gluing

rule of polyhedral blocks.
The point lying on a face of codimension one in *

n
corresponds to a configuration with

a collision of two points. Hence, we may label this face by a circular permutation of n!2
numbers and a group of two numbers up to reflection. For example, the label (12)32n
means that each point on that face represents a collision of the points marked by 1 and 2.
Then the number of polyhedral blocks which share such a face is two according to how we
approach to that degenerate configuration from nondegenerate ones. Hence, the gluing
does not yield any singularity along such a face. This proves that our geometrization is
a hyperbolic cone-manifold by the definition of cone-manifolds.

The point lying on a face of codimension two in *
n
corresponds to a configuration with

either a pair of collisions of two points or a collision of three points. We may label such
a face by grouping marks involved in the collision together, such as (12)3(45)62n,
(123)42n, etc.

In the first case, the number of polyhedral blocks which share such a face is four
according to how we approach to that degenerate configuration. On the other hand, the
dihedral angle of two faces which share this codimension two face is p/2 by Lemma 5(1).
Hence, again the gluing does not yield any singularity along such a face.

These two observations show that X
n

is nonsingular when n"5. Actually, it is
a hyperbolic surface which consists of 12 hyperbolic right angle pentagons. Since each
vertex belongs to four pentagons, the number of faces (pentagon), edges, vertices are
12, 30, 15, respectively, and Euler characteristic is !3. It follows that it is a nonorientable
surface homeomorphic to a connected sum of five copies of RP2.

Let us discuss the case when n"6 before going into the other case. X
6

consists of the
interior of 60 hyperbolic hexahedra. We are not allowed to have a collision of three
successive points in this case. Hence, the gluing does not yield any singularity along face of
codimension at most two. Then consider a point on the face of codimension three. Since
n!3"3, such a face is a vertex and corresponds to a triple of collisions of two points. The
number of components of X

6
which share such a vertex is eight. On the other hand, the

neighborhood of the vertex of *
6

is isometric to a neighborhood of the vertex of the
intersection between the non-negative orthant in the Poincaré model of H3 in R3. Hence,
again the gluing does not yield any singularity. Moreover, since horospherical cut of an

ideal vertex in *
6

is always square, the gluing yields a complete end. Therefore X
6

is
a complete hyperbolic 3-manifold.

We can derive a few more information about geometry of X
6
. Since *

6
is scissors

congruent to a quarter of the regular ideal octahedron, whose volume is 3.663862, the

volume of X
6
is 54.9572. X

6
admits a natural action of the symmetry group of degree 6 by

permuting labels of points. It turns out to be a full isometry group since the quotient is
congruent to the smallest orbifold with appropriate date found by Adams in [1]. We will see

in the next section that X
6

has ten cusps.
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Fig. 6.

Suppose now that n*7 and let us consider the neighborhood of a degenerate config-
uration with a collision of three successive points. This always happens when n*7. There
are six polyhedral blocks which share that configuration on the boundary according to the
permutations of three numbers involved in the collision as in the Fig. 6. But by Lemma 5,
the dihedral angle of each piece is less than 2p/6, thus it gives rise to the singular points.
Hence we have

THEOREM 1. X
n
is a hyperbolic cone-manifold and homeomorphic to X

Y
(n).

f ¼hen n"5 or 6, it is nonsingular.
f ¼hen n*7, the singular set is nonempty.

Remark 3. Every configuration appeared in X
n
has at least three labeled points which

are disjointly placed on the circle. Normalize neighbor configurations of any particular
degenerate one by sending such labeled points to M0, 1, RN by means of a projective
automorphism. Then its neighborhood in X

n
is parameterized by the position of other n!3

points. This observation shows that X
n
is topologically a manifold.

3. DEFORMATION

3.1. Perturbation

In the previous section, the configuration space X (n) is identified with the space of
marked equiangular n-gons up to similarity. The identification is given by the
Schwarz—Christoffel mapping with all external angles fixed to 2p/n. If we perturb these
external angles, the images of Schwarz—Christoffel mapping change and one can expect that
the hyperbolic structure of the configuration space will deform accordingly.

Let #
n
be the set of n-tuples of real numbers h"(h

1
, 2, h

n
) satisfying the relations

n
+
j/1

h
j
"2p and 0(h

i
#h

j
(p (i, j3M1, 2 , nN).

The indices should be understood modulo n throughout the sequel.
Fix an element h"(h

1
, 2, h

n
) of #

n
. Choose a"(a

1
, 2, a

n
)3(RP1)n!D, and we

assign to a the unit disc in C with n points specified on the boundary. Then we map it
conformally to an n-gon P whose vertices are the images of the specified points and the
external angle of the image of the jth point a

j
is h

j
. By the Schwarz—Christoffel formula, P is

defined up to mark preserving similarity. Let X
n,h be the space of mark preserving similarity

classes of Euclidean n-gons with external angles Mh
1
,2 , h

n
N compatible with markings.
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Then the same argument in Lemma 1 shows that

LEMMA 6. ¹here is a canonical homeomorphism between X (n) and X
n,h.

As in the previous section, we get a hyperbolic polyhedral structure on each component
of X

n,h—we start from the parameterization (x
1
, 2, x

n
) of polygons by edge length and the

function Area turns out to be a quadratic form of signature (1, n!3) again. Each compon-
ent is identified with the intersection of hyperbola Area~1(1) and n halfspaces. The
components of X

n,h are no longer congruent each other. However, the gluing rule still
makes sense, and we obtain a hyperbolic cone-manifold X

n,h as well by identifying the
boundary of X

n,h+X(n) with corresponding weights. X
n,h contains X

n,h as an open dense
subset. We will see what X

n,h looks like when n"5, 6.

3.2. Deformations of X
5

Fix an element h"(h
1
, 2, h

5
) of #

5
. Let p"Si

1
i
2
i
3
i
4
i
5
T be a circular permutation of

M1, 2 , 5N up to reflection and º
p,h the component of X

5,h which consists of all pentagons
whose marking correspond to p. The external angle of the vertex marked by i is h

i
by

definition. Each element of º
p,h is parameterized by the side lengths (x

i1i2
, x

i2i3
, 2, x

i5 i1
)

where x
ia ib

is the length of the edge between the vertices marked by i
a
and i

b
.

We modify the notation in the previous section and set

E
p,h :"G(xi1i2

, 2, x
i5i1

) Dx
i1i2

#x
i2 i3

exp (J!1h
i2
)#2#x

i5 i1
exp (J!1

5
+
j/2

h
ij
)"0H

X :"JAreaA, ½:"JAreaB, Z :"JAreaC

where A, B and C are the triangles A, B
1

and C
1

in Fig. 2, respectively. By the same
argument in the proof of Lemma 2, (X, ½, Z) is a coordinate of E

p,h .
Set P

5
"Area~1(1)WMX'0N, then º

p,h is homeomorphic to P
5
WY5

a/1
Mx

ia ia`1
'0N i.e.

a hyperbolic pentagon. We denote by *
p,h this hyperbolic pentagon. We also simply denote

by (i
1
i
2
)i
3
i
4
i
5
its edge which corresponds to the degenerate pentagons by the collision of the

vertices i
1

and i
2
. Similarly, we use (i

1
i
2
) (i

3
i
4
) i

5
to represent the verticies of *

p,h .
We next calculate the length of the edge i

1
i
2
i
3
(i
4
i
5
).

LEMMA 7. ¸et h"(h
1
, 2, h

5
) be an element of #

5
and ¸ (i

1
i
2
i
3
(i
4
i
5
); h) the length of the

edge i
1
i
2
i
3
(i
4
i
5
) of *

p,h . ¹hen we have

cosh¸ (i
1
i
2
i
3
(i
4
i
5
);h)"S

sin h
i1
sinh

i3
sin(h

i1
#h

i2
) sin (h

i2
#h

i3
)
.

Proof. Suppose that the pentagon *
p,h is placed in the hyperboloid of X½Z space as

explained above such that i
1
i
2
i
3
(i
4
i
5
) and i

1
(i
2
i
3
) i

4
i
5
are in M½"0N and MZ"0N, respective-

ly. By Lemma 5, the end points of i
1
i
2
i
3
(i
4
i
5
) are i

1
(i
2
i
3
) (i

4
i
5
) and (i

1
i
2
)i
3
(i
4
i
5
). We denote

their coordinates by (x@, y@, z@) and (x@@, y@@, z@@).
Observe that i

1
(i
2
i
3
)(i

4
i
5
) is in M½"0N and MZ"0N, so (x@, y@, z@)"(1, 0, 0).

Next we calculate x@@. The pentagon P with x
i2i3

"0 and x
i4 i5

"0 is depicted in the Fig. 7.
Calculate the areas of A and P by using the edge e

1
as the common base edge:

Area(P) : Area(A)"e
2
sin (h

i1
#h

i2
) : e

3
sin h

i1
.
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Fig. 7. Degeneration of i
1
i
2

and i
4
i
5
.

Since Area(P)"1 at (x@@, y@@, z@@) and using the sine rule:

e
2

sin (h
i2
#h

i3
)
"

e
3

sin h
i3

we have

x@@"JArea(A)"S
sin h

i1
sin h

i3
sin (h

i1
#h

i2
) sin (h

i2
#h

i3
)
. (1)

By Lemma 4,

cosh¸ (i
1
i
2
i
3
(i
4
i
5
); h)"q ((x@, y@, z@), (x@@, y@@, z@@))"q((1, 0, 0), (x@@, y@@, z@@))"x@@. (2)

The identities (1) and (2) prove the lemma. K

Now we investigate how the hyperbolic structure changes when h is perturbed.
First, we comment on the topological type of the new X

5,h. For each h near
h
0
"(2p/5, 2p/5,2 , 2p/5), the same argument in Lemma 5(1) shows that *

p,h is a right-
angled pentagon, and hence X

5,h is still a hyperbolic surface with the same topology as

X
5
+d5RP2.
The surface is nonorientable and does not support any complex structure at all.

However, we can still establish the analogue of Teichmüller theory. In fact, if we choose
a maximal family of mutually disjoint nonparallel simple closed curves, then the set of
hyperbolic structures is parameterized by their lengths and twisting amount for 2-sided
ones. Hence the Teichmüller space T(d5RP2) is homeomorphic to R9. Following Teich-
müller theory, we call this coordinate a Fenchel—Nielsen coordinate.

To find a system of mutually disjoint, nonparallel simple closed curves, let us enjoy some
patch work. Here is part of our surface.

The end points of each solid lines in the Fig. 8 are identified in X
5,h to form

closed geodesics and they are mutually disjoint. Reading the labels in the figure, we

have simple closed curves (i
4
i
5
) in X

5,h which consists of three edges i
1
i
2
i
3
(i
4
i
5
), i

2
i
1
i
3
(i
4
i
5
)

and i
2
i
3
i
1
(i
4
i
5
).

We choose ( j5), j"1, 2 , 4 as a system of four mutually disjoint, nonparallel simple
closed curves, and let ¸ (ij; h) denote the length of (ij) where i, j3M1, 2 , 5N and h3#

5
. In

the next lemma, we calculate ¸ (ij;h). For h"(h
1
, h

2
, h

3
, h

4
, h

5
)3#, define a function

N(i
1
i
2
i
3
; h) by

N(i
1
i
2
i
3
;h)

"

sin h
i1
sin h

i2
sin h

i3
! sin (h

i1
#h

i2
#h

i3
) ( sin h

i1
sin h

i2
# sin h

i2
sin h

i3
# sin h

i3
sin h

i1
)

sin (h
i1
#h

i2
) sin (h

i2
#h

i3
)sin (h

i3
#h

i1
)

.
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Fig. 8.

Then we have

LEMMA 8. For Mi
1
, i

2
, i

3
, i

4
, i

5
N"M1, 2 , 5N and h"(h

i
, h

2
, h

3
, h

4
, h

5
)3#

5
:

cosh (¸ (i
4
i
5
; h))"N (i

1
i
2
i
3
; h).

To prove this lemma, we prepare a lemma for trigonometric computation.

LEMMA 9. For any a, b, c3R, we have

sin a sin c!sin (a#b) sin (b#c)"! sin b sin (a#b#c). (3)

Proof. The addition rule says the identity, (cos (a!b)!cos (a#b))/2"sin a sin b.
Apply this relation for each term in equation (3). K

Proof of ¸emma 8. Put *
p,h in the hyperbola of X½Z space again (see Fig. 9(a)). Suppose

that e
1
:"i

1
i
2
i
3
(i
4
i
5
) corresponds to M½"0N and e

2
:"(i

1
i
2
)i
3
i
4
i
5

corresponds to MZ"0N.
Developing across e

2
, we meet i

2
i
1
i
3
i
4
i
5

and the edge next to e
1

is e
3
:"i

2
i
1
i
3
(i
4
i
5
). Let

p
a
"(x

a
, y

a
, z

a
) be the end points of e

a
(a"1, 3) which is not (1, 0, 0). For simplicity, we

denote sinh
ij
, sin(h

ij
#h

ik
), sin(h

ij
#h

ik
#h

il
) by s

j
, s

jk
, s

jkl
respectively. Then by Lemma 7

x
1
"S

s
1
s
3

s
12

s
23

, y
1
"Jx2

1
!1"S

s
1
s
3
!s

12
s
23

s
12

s
23

"S
!s

2
s
123

s
12

s
23

, z
1
"0

x
3
"S

s
2
s
3

s
21

s
13

, y
3
"!Jx2

3
!1"!S

s
2
s
3
!s

21
s
13

s
21

s
13

"!S
!s

1
s
123

s
21

s
13

, z
3
"0.

We used equation (3) for y
1

and y
3
.

Now apply the hyperbolic isometry / on the hyperboloid which fixes the geodesic
through e

1
(and e

3
) setwise and sends p

3
to (1, 0, 0) (Fig. 9(b)). Denote by (x@

1
, y@

1
, z@

1
) the

coordinate of / (p
1
). Since / preserves q

x@
1
"x@

1
) 1!y@

1
) 0!z@

1
) 0"q (/ (p

1
), / (p

3
))"q (p

1
, p

3
)"x

1
x
3
!y

1
y
3

"S
s
1
s
3
s
2
s
3

s
12

s
23

s
21

s
13

#S
s
2
s
123

s
1
s
123

s
12

s
23

s
21

s
13

y@
1
"Jx@

1
2!1"S

s
1
s
3
s
2
s
3
#s

2
s
123

s
1
s
123

!2s
1
s
2
s
3
s
123

!s
12

s
23

s
21

s
13

s
12

s
23

s
21

s
13

.
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Fig. 9.

In the above equation, we used Js2
j
"s

j
, Js2

jj`1
"s

jj`1
and Js2

jj`1j`2
"!s

jj`1j`2
because 0(h

ij
#h

ij`1
(p and p(h

ij
#h

ij`1
#h

ij`2
(2p. By (3), s

12
s
23

s
21

s
13
"

(s
1
s
3
#s

2
s
123

) (s
2
s
3
#s

1
s
123

), hence

"S
s
1
s
3
s
2
s
3
#s

2
s
123

s
1
s
123

!2s
1
s
2
s
3
s
123

!(s
1
s
3
#s

2
s
123

) (s
2
s
3
#s

1
s
123

)

s
12

s
23

s
21

s
13

"S
!(s

1
#s

2
)2s

3
s
123

s
12

s
23

s
21

s
13

,

z@
1
"0.

Develop again across i
2
(i
1
i
3
)i
4
i
5

to meet the component i
2
i
3
i
1
i
4
i
5

and the edge next to e
3

is
e
4
"i

2
i
3
i
1
(i
4
i
5
). Let p

4
"(x

4
, y

4
, z

4
) be the end points of e

4
which is not (1, 0, 0). Then again

by Lemma 7

x
4
"S

s
2
s
1

s
23

s
31

, y
4
"!Jx2

4
!1"!S

s
2
s
1
!s

23
s
31

s
23

s
31

"!S
!s

3
s
123

s
23

s
31

, z
4
"0.

Hence, the hyperbolic cosine of the length of e
1
e
3
e
4

is

cosh d (/(p
1
), p

4
)

"x@
1
x
4
!y@

1
y
4
!z@

1
z
4

"AS
s
1
s
3
s
2
s
3

s
12

s
23

s
21

s
13

#S
s
2
s
123

s
1
s
123

s
12

s
23

s
21

s
13
BS

s
2
s
1

s
23

s
31

#S
!(s

1
#s

2
)2s

3
s
123

s
12

s
23

s
21

s
13

S
!s

3
s
123

s
23

s
31

"

s
1
s
2
s
3
!s

123
(s
1
s
2
#s

2
s
3
#s

3
s
1
)

s
12

s
23

s
31

. K

THEOREM 2. ¹he map from #
5

to T(d5RP2) defined by the assignment: h>X
n,h is

a local embedding at h
0
"(2p/5, 2, 2p/5).

Proof. Choose four closed geodesics (15), (25), (35) and (45). By Fig. 8, they are mutually
disjoint and nonparallel, so that their lengths will be a part of a Fenchel—Nielsen coordinate.
Taking these components of the map from # to T(d5RP2), we get

': #
5

P R4

h"(h
1
, 2, h

5
) > (¸(15;h), ¸(25;h), ¸(35;h), ¸(45;h)).

It is enough to show that the Jacobian of ' does not vanish at h
0
. As a basis of the tangent

space of # at h
0
, we take four paths p

j
(t)"(h

j1
(t),2 , h

j5
(t)) j"1, 2 , 4 passing through
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the barycenter h
0
defined by h

jj
(t)"2p

5
#t, h

jj`1
(t)"2p

5
!t, h

jk
(t)"2p

5
for kOj, j#1. Then

'(p
1
(t))"(a(t), b(t), c(t), c(t))

'(p
2
(t))"(c(t), a(t),b(t), c(t))

'(p
3
(t))"(c(t), c(t), a(t), b(t))

'(p
4
(t))"(b(t), b(t),b(t), d(t))

where

cosh a(t)"N(234; p
1
(t)), cosh b(t)"N (134;p

1
(t))

cosh c(t)"N(124; p
1
(t)), cosh d(t)"N (123;p

4
(t)).

Then since a@(0)"!b@(0) is non-zero and c@(0)"d@(0)"0, it is easy to see that the Jacobian
of ' at h

0
is !3(a@(0))4O0. K

3.3. Deformations of X
6

As in the previous case, we use the notation #
6
, p"Si

1
i
2
i
3
i
4
i
5
i
6
T, º

p,h and P
6
, etc.

Also set

E
p,h :"G(xi1i2

, 2 , x
i6 i1

) Dx
i1i2

#x
i2i3

exp(J!1h
i2
) #2#x

i6i1
exp (J!1

6
+
j/2

h
ij
)"0H,

X:"JAreaA, ½:"JAreaB, Z:"JAreaC, ¼:"JAreaD

where A,B,C,D are A,B
1
,C

1
,A

3
in Fig. 2. Then (X,½,Z,¼) is a coordinate of E

p,h. ºp,h is
homeomorphic to the region *

p,h"P
6
WY6

a/1
Mx

ia ia`1
*0N which is a hyperbolic hexahed-

ron of finite volume.
Let us describe how *

p,h deforms when we perturb h (see Fig. 10). We denote the face of
*
p,h which corresponds to the set of degenerate hexagons by collisions of the points i

j
and

i
j`1

by (i
j
i
j`1

) i
j`2

i
j`3

i
j`4

i
j`5

or (i
j
i
j`1

) if there is no confusion.
When the weights are equal, namely h

0
"(2p/6,2 , 2p/6), *

p,h0 has three ideal vertices.
Observe that the four faces containing an ideal vertex has labels of type (i

k
i
k`1

), (i
k`1

i
k`2

),
(i
k`3

i
k`4

), (i
k`4

i
k`5

) for some k3M0, 2 , 5N. We denote this vertex by (i
k
i
k`1

i
k`2

)
(i
k`3

i
k`4

i
k`5

).
If we perturb the angles so that h

ik
#h

ik`1
#h

ik`2
(n, then three vertices i

k
, i

k`1
, i

k`2
of the hexagon can collide, and (i

k
i
k`1

) and (i
k`1

i
k`2

) intersects in P
6
. If

h
ik`3

#h
ik`4

#h
ik`5

(p, then (i
k`3

i
k`4

) and (i
k`4

i
k`5

) intersects (see Fig. 10). Let us use the
notation (i

1
i
2
i
3
) i
4
i
5
i
6

and i
1
i
2
i
3
(i
4
i
5
i
6
) to indicate edges appeared by these perturbations,

respectively.
We shall calculate the dihedral angles between this newly intersecting faces. Note that

dihedral angles around other (old) edges are p/2 by the same argument as in Lemma 5.

LEMMA 10. Suppose that h"(h
1
, 2, h

6
) be an element of #

6
and h

i1
#h

i2
#h

i3
(p. ¸et

u be the dihedral angle between the faces (i
1
i
2
)i
3
i
4
i
5
i
6

and i
1
(i
2
i
3
)i
4
i
5
i
6
. ¹hen we have

cos u"S
sin h

i1
sin h

i3
sin (h

i1
#h

i2
) sin (h

i2
#h

i3
)
.

To prove this lemma, we shall use the next identity.
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Fig. 10. Cusp of X
6
.

LEMMA 11. Suppose that a
1
#a

2
#a

3
#a

4
#a

5
#a

6
"2p. ¹hen

sin (a
1
#a

2
) sin a

4
!sin (a

5
#a

6
) sin a

3
"sin (a

1
#a

2
#a

3
) sin (a

3
#a

4
). (4)

Proof. By the addition rule, we have

sin (a
1
#a

2
) sin a

4
!sin (a

5
#a

6
) sin a

3

"sin (a
1
#a

2
#a

3
!a

3
) sin a

4
!sin (a

4
#a

5
#a

6
!a

4
) sin a

3

"sin (a
1
#a

2
#a

3
) cos a

3
sin a

4
!cos (a

1
#a

2
#a

3
) sin a

3
sin a

4

!sin (a
4
#a

5
#a

6
) cos a

4
sin a

3
#cos (a

4
#a

5
#a

6
) sin a

4
sin a

3
,

and by +a
i
"2p,

"sin (a
1
#a

2
#a

3
) cos a

3
sin a

4
!cos (a

1
#a

2
#a

3
) sin a

3
sin a

4

#sin (a
1
#a

2
#a

3
) cos a

4
sin a

3
#cos (a

1
#a

2
#a

3
) sin a

4
sin a

3

"sin (a
1
#a

2
#a

3
) sin (a

3
#a

4
),

which proves the identity. K

Proof of ¸emma 10. We find the defining equations of two faces as hyperplanes in E
p,h in

terms of the coordinate X½Z¼. We again adopt the notation s
j
, s

jk
, s

jkl
for sin h

ij
, sin h

ij ik
,

sin h
ijikil

. We first recall the transformation from E
p,h to X½Z¼. We have

½"JAreaB"S
s
1
s
2

2s
12

x
i1i2

, ¼"JAreaD"S
s
3
s
4

2s
34

x
i3i4

,

X"JAreaA"S
s
12

s
34

2s
56
Axi2i3

#

s
1

s
12

x
i1i2

#

s
4

s
34

x
i3i4B

"S
s
12

s
34

2s
56
Axi2i3

#S
2s

1
s
2
s
12

JAreaB#S
2s

4
s
3
s
34

JAreaDB.
Thus, the defining equation of Mx

i1i2
"0N and Mx

i2i3
"0N is

½"0 and X"S
s
34

s
1

s
56

s
2

½#S
s
12

s
4

s
56

s
3

Z.
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Hence, we can choose normal vectors n
1
, n

2
for each hyperplane by n

1
"(0, 1, 0, 0) and

n
2
"(1, Js

34
s
1
/s

56
s
2
, 0, Js

12
s
4
/s

56
s
3
), respectively. Then by Lemma 4

cosu"

q(n
1
, n

2
)

Jq (n
1
, n

1
)q(n

2
, n

2
)

"

S
s
34

s
1

s
56

s
2

S!1#
s
34

s
1

s
56

s
2

#

s
12

s
4

s
56

s
3

"AS!

s
56

s
2

s
34

s
1

#1#
s
12

s
4
s
2

s
3
s
34

s
1
B
~1

"AS1#
s
2

s
1
s
3

]
s
12

s
4
!s

56
s
3

s
34

B
~1

,

by the identities (4) and (3),

"AS1#
s
2
s
123

s
1
s
3
B
~1

"AS1#
s
12

s
23
!s

1
s
3

s
1
s
3

B
~1

"S
s
1
s
3

s
12

s
23

which concludes the proof. K

As mentioned in the sentences before the lemma, each dihedral angle around the
old edges is p/2 so they fit together without producing any singularity. But the hyperbolic
structure at the new edges can be singular in X

6,h. A cross-section perpendicular to the
new edge will be a cone, obtained by taking a two-dimensional hyperbolic sector of
some angle and identifying the two bounding rays emanating from the center. Such
a singular structure appears in the hyperbolic Dehn filling theory in [9] and is called a cone
singularity.

Before investigating what the singularity looks like, we describe a polygonal decomposi-
tion of cusps. The faces of hexahedra *

p,hÒ
’s lie in the same component of cusps in X

6
if and

only if the labels are identical as a partition of six numbers. Hence, the number of cusps is
equal to the number of partitions of M1, 2,2 , 6N into a pair of three numbers, "(6

3
)/2"10.

We may use the notation (i
1
i
2
i
3
) (i

4
i
5
i
6
) to indicate a component of cusps also if there is no

confusion. Now, since the total amount of ideal vertices of hexahedra in X
6

is
3](6!1)!/2"180, 180/10"18 components of ideal vertices of *

p,h0’s come to a compon-

ent of cusps in X
6
. Figure 11 shows how they come to. Replacing the mark j by i

j
in Fig. 11,

we get the picture of the cusp labeled by (i
1
i
2
i
3
) (i

4
i
5
i
6
).

To calculate the cone angle for each cone singularity, we look at the boundary of a small
equidistant neighborhood of the singular locus (or the ideal vertex). Note that the boundary
is a torus obtained by gluing rectangles, each of which is a new face of some *

p,h appeared
by the truncation. Since the old faces of *

p,h intersect in right angle, not only a combina-
torial but conformal pattern of its polygonal decomposition is described by Fig. 11. We then
see that six edges with the same label (i

5
i
6
) form a nontrivial loop on the boundary. If

h
i1
#h

i2
#h

i3
(p, it winds once around the singular locus labeled by (i

1
i
2
i
3
)i
4
i
5
i
6
. If

h
i1
#h

i2
#h

i3
'p, it is homotopic to a loop winding the singular locus labeled by

i
1
i
2
i
3
(i
4
i
5
i
6
) twice.

LEMMA 12. Suppose that Mi
1
, 2, i

6
N"M1, 2, 6N, h"(h

1
, h

2
, h

3
, h

4
, h

5
, h

6
)3#

6
and

h
i1
#h

i2
#h

i3
(p. ¸et n((i

1
i
2
i
3
); h) be the cone angle about the singular locus labeled by

(i
1
i
2
i
3
)i
4
i
5
i
6

in X
6,h . ¹hen we have

cos (n((i
1
i
2
i
3
); h)/2)"N(i

1
i
2
i
3
; h).

512 S. Kojima et al.



Fig. 11. Cusp of X
6
: edges with the same letters are identified.

Proof. Regarding the mark j as i
j
in Fig. 11, we can identify the angle with the sum of

dihedral angles about the new edges of six successive hexahedra in the horizontal direction.
However because of the gluing rule shown in Fig. 11, the half can be computed by summing
three successive ones. To compute it, look at the faces of hexahedra which appear as
sections to the singular locus. The corresponding Fig. 12 in this case to Fig. 9 shows how
hexahedra are developed about the singular locus inP

6
. Choose unit normal vectors to each

face sharing the singular locus. By replacing point vectors on the hyperbola in the proof of
Lemma 8 by normal vectors to the faces in the Minkowski space, we can proceed the
computation of sum of three dihedral angles in the light of similarity between Lemmas
7 and 10. The conclusion follows from Lemma 4 (2a) here instead of (1). K

We very briefly recall some foundations of the hyperbolic Dehn filling theory based on
Thurston [9], Neumann-Zagier [8] and Culler-Shalen [4]. Let N be an orientable complete
hyperbolic 3-manifold of finite volume with s cusps, and o

0
:p

1
(N)PSL(2, C) a lift of the

holonomy representation of N. The algebro geometric quotient of all SL(2, C)-representa-
tions of %"p

1
(N) is called a character variety and denoted by X(%) . The set of Dehn filled

deformations of N is locally parameterized by a neighborhood of o
0

in X (%). The following
structure theorem is fundamental, which appeared in this form for example in [5], though
the claim could be derived from the arguments in [9, 4, 8].

LEMMA 13. X(p
1
(N)) is a smooth manifold near o

0
of complex dimension s. If m

1
, 2 , m

s
are meridional curves for cusps, then the map f :X (p

1
(N))PCs defined by

f (s)"(so(m1
), 2 , so(ms

))

is a local diffeomorphism near o where so(mi
)"trace o (m

i
).

Going back to our setting and let L be the union of singular loci (or ideal vertices).
X

6,h!L is homeomorphic to X
6

and X
6,h is its Dehn filled resultant. X

6,h!L carries
a nonsingular but incomplete hyperbolic metric. Let oh :%"p

1
(X

6,h!L)PSL(2, C) be
a lift of the holonomy representation of X

6,h!L.

To see how X
6,h is deformed, we only need by Lemma 13 to compute the trace of

a holonomy image of oh at some meridional elements. To define appropriate meridional
elements, assume for the moment that i

1
#i

2
#i

3
(p. Then the cusp labeled by

(i
1
i
2
i
3
) (i

4
i
5
i
6
) becomes a singular locus in X

6,h labeled by (i
1
i
2
i
3
)i
4
i
5
i
6
, and there is a natural

meridional element winding once around the singular locus. We denote it by m
i1i2i3

. It is
homotopic to a loop on the boundary of a tubular neighborhood of the singular locus
labeled by either (i

4
i
5
), (i

5
i
6
) or (i

4
i
6
) (see Fig. 11). Note that m

i1i2i3
is a meridional element if

i
1
#i

2
#i

3
(p but no longer meridional if i

1
#i

2
#i

3
'p in any sense.
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Fig. 12.

For example, oh(m123
) in Fig. 11 acts as a translation of six blocks in horizontal

direction, however, it is actually a rotation, a parabolic translation or a hyperbolic
translation according to whether h

1
#h

2
#h

3
is less than, equal to or greater than p.

Having this picture in mind, we prove

LEMMA 14. Suppose that Mi
1
, 2 , i

6
N"M1, 2 , 6N, h"(h

i
, 2, h

6
)3#

6
, and denote by

oh the holonomy representation with respect to h. ¹hen we have

soh
(m

i1i2i3
)"2N(i

1
i
2
i
3
; h).

Proof. Suppose that h
i1
#h

i2
#h

i3
(p and let u be exp (J!1n((i

1
i
2
i
3
)/2; h)). Then

oh(mi1i2i3
) is an elliptic element of rotation u2, and its action on CXMRN is conjugate to

z >u2z"
uz#0

0 ) z#u~1
.

Hence oh (mi1i2i3
) is conjugate to

A
u
0

0

u~1B
By Lemma 12,

soh
(m

i1i2i3
)"u#u~1"2 cos (n((i

1
i
2
i
3
); h)/2)"2N(i

1
i
2
i
3
; h).

Suppose that h
i1
#h

i2
#h

i3
"p. Then (i

1
i
2
i
3
)(i

4
i
5
i
6
) is an ideal vertex and oh (mi1i2i3

) is
a parabolic element. By easy computation, we have

soh
(m

i1i2i3
)"2"2N(i

1
i
2
i
3
; h).

Suppose that h
i1
#h

i2
#h

i3
'p. Then oh(mi1i2i3

) is a hyperbolic element translating the

face labeled by, say, (i
2
i
3
) to one to be identified in X

6,h. Regarding i
j
as j in Fig. 11, we can

identify the faces in question with ones on the right-hand and left-hand sides. Let d be
a distance between them.

d is equal to the sum of lengths of edges labeled by i
1
i
2
i
3
(i
4
i
5
i
6
) in six successive

hexahedra in the horizontal direction in Fig. 11. Again because of the gluing rule in Fig. 11,
the half of d can be computed by summing three successive ones. Then developing the faces
of three hexahedra involving the edges labeled by i

1
i
2
i
3
(i
4
i
5
i
6
) as in Fig. 9, we now realize

that the computation we carried out in Lemma 12 measures the distance between faces
labeled by (i

2
, i

3
) on a side and (i

2
i
3
) on the middle in Fig. 11 because of Lemma 4 (2b). More

precisely, we have

cosh (d/2)"N (i
1
i
2
i
3
; h).
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The difference is that the value of Lorentz bilinear forms for normal vectors is greater than
1 in this case, but less than 1 in the previous case.

The action of such a hyperbolic motion is conjugate to

z >j2z"
jz#0

0 ) z#j~1

where j is a real number '1 and d"log j2. Hence, oh (mi1i2i3
) is conjugate to

A
j
0

0

j~1B
and

soh
(m

i1i2i3
)"j#j~1"ed@2#e~d@2"2 cosh (d/2)"2N(i

1
i
2
i
3
; h).

This completes the proof. K

THEOREM 3. ¹he map from #
6

to X (%) defined by the assignment: h>X
6,h is a local

embedding at h
0
"(p/3,2, p/3).

Proof. To apply Lemma 13, we choose meridional loops for five cusps, say m
145

, m
234

,

m
235

, m
245

, m
345

. Denote by oh a lift of the holonomy of X
6,h!L in SL(2, C). Let

' :#
6
PC5 be a map defined by

h >(soh
(m

145
), soh

(m
234

), soh
(m

235
), soh

(m
245

), soh
(m

345
)).

It suffices to show that ' is locally injective around h
0
. Since the image of ' is contained in

the real part R5LC5, we regard ' as a map from # to R5. We shall show that the Jacobian
of ' does not vanish.

As a basis of the tangent space of # at h
0
, we take the following five paths.

p
j
(t)"(h

j1
(t),2, h

j6
(t)) ( j"1,2, 5) passing through h

0
defined by

h
jj
(t)"

p

3
!t, h

j6
(t)"

p

3
#t, h

jk
(t)"

p

3
for kOj, 6.

By Lemma 14 we have

'(p
1
(t)) " ( f (t), 2, 2, 2, 2 )

'(p
2
(t)) " ( 2, f (t), f (t), f (t), 2 )

'(p
3
(t)) " ( 2, f (t), f (t), 2, f (t) )

'(p
4
(t)) " ( f (t), f (t), 2, f (t), f (t) )

'(p
5
(t)) " ( f (t), 2, f (t), f (t), f (t) )

where

f (t)"2NA123;A
p
3
!t,

p
3

,
p
3

,
p
3

,
p
3 BB

"2

sin
p

3
sinA

p

3
!tB!sin

p

3
sin t!2 sin t sinA

p

3
!tB

sin2A
2p

3
!tB

.
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Then f @(0)"!6J3. Therefore, the Jacobian of ' at h
0

is !3](!6J3)5 which concludes
the proof of the theorem. K

Remark 4. Our computation is valid only when h is close to h
0
. Ref. [7] presents an

expanded background for the present deformation which might help to prove global
injectivity.
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