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Abstract

This chapter presents a computational methodology for modeling 2-dimensional grasping of
a 2-D object by a pair of multi-joint robot fingers under rolling contact constraints. Rolling
contact constraints are expressed in a geometric interpretation of motion expressed with the
aid of arclength parameters of the fingertips and object contours with an arbitrary geometry.
Motions of grasping and object manipulation are expressed by orbits that are a solution to
the Euler-Lagrange equation of motion of the fingers/object system together with a set of
first-order differential equations that update arclength parameters. This methodology is then
extended to mathematical modeling of 3-dimensional grasping of an object with an arbitrary
shape.
Based upon the mathematical model of 2-D grasping, a computational scheme for construc-
tion of numerical simulators of motion under rolling contacts with an arbitrary geometry is
presented, together with preliminary simulation results.
The chapter is composed of the following three parts.

Part 1 Modeling and Control of 2-D Grasping under Rolling Contacts between Arbitrary
Smooth Contours
Authors: S. Arimoto and M. Yoshida

Part 2 Simulation of 2-D Grasping under Physical Interaction of Rolling between Arbitrary
Smooth Contour Curves
Authors: M. Yoshida and S. Arimoto

Part 3 Modeling of 3-D Grasping under Rolling Contacts between Arbitrary Smooth Surfaces
Authors: S. Arimoto, M. Sekimoto, and M. Yoshida

1. Modeling and Control of 2-D Grasping under Rolling Contacts between Arbitrary

Smooth Contours

1.1 Introduction

Modeling and control of dynamics of 2-dimensional object grasping by using a pair of multi-
joint robot fingers are investigated under rolling contact constraints and an arbitrary geometry
of the object and fingertips. First, modeling of rolling motion between 2-D rigid objects with
an arbitrary shape is treated under the assumption that the two contour curves coincide at
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the contact point and share the same tangent. The rolling contact constraints induce an Euler
equation of motion parametrized by a pair of arclength parameters and constrained onto the
kernel space as an orthogonal complement to the image space spanned from all the constraint
gradients. Further, it is shown that all the Pfaffian forms of the constraints are integrable
in the sense of Frobenius and therefore the rolling contacts are regarded as a holonomic con-
straint. The Euler-Lagrange equation of motion of the overall fingers/object system is derived
together with a couple of first-order differential equations that express evolution of contact
points in terms of quantities of the second fundamental form. A control signal called “blind
grasping" is defined and shown to be effective in stabilization of grasping without using the
details of object shape and parameters or external sensing.

1.2 Modeling of 2-D Grasping by Euler-Lagrange Equation

Very recently, a complete model of 2-dimensional grasping of a rigid object with arbitrary
shape by a pair of robot fingers with arbitrarily given fingertip shapes (see Fig. 1) is presented
based upon the differential-geometric assumptions of rolling contacts [Arimoto et al., 2009a].
The assumptions are summarized as follows:
1) Two contact points on the contour curves must coincide at a single common point without
mutual penetration, and
2) the two contours must have the same tangent at the common contact point.
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Fig. 1. A pair of two-dimensional robot fingers with a curved fingertip makes rolling contact
with a rigid object with a curved contour.

As pointed out in the previous papers [Arimoto et al., 2009a] [Arimoto et al., 2009b], these
two conditions as a whole are equivalent to Nomizu’s relation [Nomizu, 1978] concerning
tangent vectors at the contact point and normals to the common tangent. As a result, a set of
Euler-Lagrange’s equations of motion of the overall fingers/object system is presented in the
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Fig. 2. Definitions of tangent vectors bi, b0i and normals ni and n0i at contact points Pi for
i = 1, 2.

following forms:

Mẍ − ∑
i=1,2

( fin̄0i + λi b̄0i) = 0 (1)

Iθ̈ + ∑
i=1,2

(−1)i{ fi(b
T
0iγ0i)− λi(n

T
0iγ0i) = 0 (2)

Gi(qi)q̈i +

{

1

2
Ġi(qi) + Si(qi, q̇i)

}

q̇i + fi{JT
i (qi)n̄0i − (−1)i(bT

i γi)ei}

+λi

{

JT
i (qi)b̄0i − (−1)i(nT

i γi)ei

}

= ui, i = 1, 2 (3)

where qi denotes the joint vector as q1 = (q11, q12, q13)
T and q2 = (q21, q22)

T, θ̇ denotes the
angular velocity of rotation of the object around the object mass center Om expressed by posi-
tion vector x = (x, y)T in terms of the inertial frame coordinates O-xy. Equation (1) expresses
the translational motion of the object with mass M and (2) its rotational motion with inertia
moment I around the mass center Om. At the contact point Pi, bi denotes the unit tangent
vector expressed in local coordinates of Oi-XiYi fixed to the fingertip of finger i (i = 1, 2) as
shown in Fig. 1, and ni denotes the unit normal to the tangent expressed in terms of Oi-XiYi.
Similarly, b0i and n0i are the unit tangent and normal at Pi expressed in terms of local coor-
dinates Om-XY fixed to the object. All these unit vectors are determined uniquely from the
assumptions 1) and 2) on the rolling contact constraints at each contact point Pi dependently
on each corresponding value si of arclength parameter for i = 1, 2 as shown in Fig. 2. Equation
(3) denotes joint motions of finger i with the inertia matrix Gi(qi) for i = 1, 2 and e1 = (1, 1, 1)T

and e2 = (1, 1)T. All position vectors γi and γ0i for i = 1, 2 are defined as in Fig. 2 and ex-
pressed in their corresponding local coordinates, respectively. Both the unit vectors b̄0i and
n̄0i are expressed in the inertial frame coordinates as follows:

b̄0i = Π0b0i, n̄0i = Π0n0i, Π0 = (rX , rY) (4)
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where Π0 ∈ SO(2) and rX and rY denote the unit vectors of X- and Y-axes of the object in
terms of the frame coordinates O-xy. In the equations of (1) to (3), fi and λi are Lagrange’s
multipliers that correspond to the following rolling contact constraints respectively:

{

Qbi = (ri − rm)
T

b̄0i + b
T
i γi − b

T
0iγ0i = 0, i = 1, 2 (5)

Qni = (ri − rm)
T

n̄0i − n
T
i γi − n

T
0iγ0i = 0, i = 1, 2 (6)

where ri denotes the position vector of the fingertip center Oi expressed in terms of the frame
coordinates O-xy and rm the position vector of Om in terms of O-xy. In parallel with Euler-
Lagrange’s equations (1) to (3), arclength parameters si (i = 1, 2) should be governed by the
following formulae of the first order differential equation :

{κ0i(si) + κi(si)}
dsi

dt
= (−1)i(θ̇ − ṗi), i = 1, 2 (7)

where κi(si) denotes the curvature of the fingertip contour for i = 1, 2 and κ0i(si) the curvature
of the object contour at contact point Pi corresponding to length parameter si for i = 1, 2.
Throughout the paper we use (˙) for denoting the differentiation of the content of bracket (
) in time t as θ̇ = dθ/dt in (7) and ( ′) for that of ( ) in length parameter si as illustrated by
γ′

i(si) = dγi(si)/dsi. As discussed in the previous papers, we have

bi(si) = γ′
i(si)

(

=
dγi(si)

dsi

)

, b0i(si) = γ′
0i(si), i = 1, 2 (8)

and

ni(si) = κi(si)b
′
i(si), n0i(si) = b

′
0i(si), i = 1, 2 (9)

and further

bi(si) = −κi(si)n
′
i(si), b0i(si) = −κ0i(si)n

′
0i(si), i = 1, 2 (10)

It is well known as in text books on differential geometry of curves and surfaces (for example,
see [Gray et al., 2006]) that equations (9) and (10) constitute Frenet-Serre’s formulae for the
fingertip contour curves and object contours. Note that all equations of (1) to (3) are charac-
terized by length parameters si for i = 1, 2 through unit vectors n0i, b0i, bi, and ni, and vectors
γ0i and γi expressed in each local coordinates, but quantities of the second fundamental form
of contour curves, that is, κi(si) and κ0(si) for i = 1, 2, do not enter into equations (1) to (3).
It is shown that the set of Euler-Lagrange equations of motion (1) to (3) can be derived by
applying the variational principle to the Lagrangian of the system

L(X; s1, s2) = K(X, Ẋ)− ∑
i=1,2

( fiQni + λiQbi) (11)

where X denotes the position state vector defined as

X = (x, y, θ, qT
1 , qT

2 )
T (12)

and

K(X, Ẋ) =
M

2
(ẋ2 + ẏ2) +

I

2
θ̇2 + ∑

i=1,2

1

2
q̇T

i Gi(qi)q̇i (13)
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Note that K(X, Ẋ) is independent of the shape parameters s1 and s2 but Qni and Qbi defined
by (5) and (6) are dependent on si for i = 1, 2 respectively. The variational principle is written
in the following form:

∫ t1

t0

{

δL + uT
1 δq1 + uT

2 δq2

}

dt = 0 (14)

From this it follows that

G(X)Ẍ +

(

1

2
Ġ(X) + S(X, Ẋ)

)

Ẋ + ∑
i=1,2

(

fi
∂

∂X
Qni + λi

∂

∂X
Qbi

)

= B

(

u1

u2

)

(15)

where G(X) = diag(M, M, I, G1(q1), G2(q2)), S(X, Ẋ) is a skew-symmetric matrix, and B de-
notes the 8× 5 constant matrix defined as BT = (03×5, I5), 03×5 signifies the 3× 5 zero matrix,
and I5 the 5 × 5 identity matrix.

1.3 Fingers-Thumb Opposable Control Signals

In order to design adequate control signals for a pair of multi-joint fingers like the one shown
in Fig. 1, we suppose that the kinematics of both the robot fingers are known and measurement
data of joint angles and angular velocities are available in real-time but the geometry of an
object to be grasped is unknown and the location of its mass center together with its inclination
angle can not be measured or sensed. This supposition is reasonable because the structure of
robot fingers is fixed for any object but the object to be grasped is changeable from time to
time. This standpoint is coincident to the start point of Riemannian geometry that, if the
robot (both the robot fingers) has its own internal world, then the robot kinematics based
upon quantities of the first fundamental form like γi(si) and bi(si) together with qi and q̇i

must be accessible because these data are intrinsic to the robot’s internal world. However, any
quantities of the second fundamental form like κi(si) (i = 1, 2) can not be determined from
the robot’s intrinsic world. By the same season, we assume that the positions of finger centers
O1 and O2 denoted by r1 and r2 are accessible from the intrinsic robot world and further the
Jacobian matrices defined by Ji(qi) = ∂ri/∂qi for i = 1, 2 are also assumed to be intrinsic, that
is, real-time computable. Thus, let us now consider a class of control signals defined by the
following form

ui = −ci q̇i + (−1)iβJT
i (qi)(r1 − r2)− αi N̂iei, i = 1, 2 (16)

where β stands for a position feedback gain common for i = 1, 2 with physical unit [N/m], αi

is also a positive constant common for i = 1, 2, N̂i is defined as

N̂i = e
T
i {qi(t)− qi(0)} = pi(t)− pi(0), i = 1, 2 (17)

and ci denotes a positive constant for joint damping for i = 1, 2. The first term of the right
hand side of (16) stands for damping shaping, the second term plays a role of fingers-thumb
opposition, and the last term adjusts possibly some abundunt motion of rotation of the object
through contacts. Note that the sum of inner products of ui and q̇i for i = 1, 2 is given by the
equation

∑
i=1,2

q̇T
i ui = −

d

dt

{

β

2
‖r1 − r2‖

2 + ∑
i=1,2

αi

2
N̂2

i

}

− ∑
i=1,2

ci‖q̇i‖
2 (18)
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Substitution of control signals of (16) into (3) yields

Gi q̈i +

{

1

2
Ġi + Si

}

q̇i + ci q̇i − (−1)iβJT
i (r1 − r2) + αi N̂iei

+ fi

{

JT
i n̄0i − (−1)i(bT

i γi)ei

}

+ λi

{

JT
i b̄0i − (−1)i(nT

i γi)ei

}

=0, i = 1, 2 (19)

Hence, the overall closed-loop dynamics is composed of the set of Euler-Lagrange’s equations
of (1), (2), and (19) that are subject to four algebraic constraints of (5) and (6) and the pair of the
first-order differential equations of (7) that governs the update law of arclength parameters s1

and s2. It should be also remarked that, according to (18), the sum of inner products of (1) and
ẋ, (2) and θ̇, and (19) and q̇i for i = 1, 2 yields the energy relation

d

dt
E(X, Ẋ) = − ∑

i=1,2

ci‖q̇i‖
2 (20)

where

E(X, Ẋ) = K(X, Ẋ) + P(X) (21)

P(X) =
β

2
‖r1 − r2‖

2 + ∑
i=1,2

αi

2
N̂2

i (22)

and K(X, Ẋ) is the total kinetic energy defined by (13) and P(X) is called the artificial potential
energy that is a scalar function depending on only q1 and q2. It is important to note that the
closed-loop dynamics of (1), (2), and (19) can be written into the general form, correspondingly
to (15),

G(X)Ẍ +

{

1

2
Ġ(X) + S(X, Ẋ) + C

}

Ẋ +
∂P(X)

∂X

+ ∑
i=1,2

(

fi
∂

∂X
Qni + λi

∂

∂X
Qbi

)

= 0 (23)

where C = diag(02, 0, c1 I3, c2 I2). This can be also obtained by applying the principle of varia-
tion to the Lagrangian

L = K(X, Ẋ)− P(X)− ∑
i=1,2

( fiQni + λiQbi) (24)

1.4 Necessary Conditions for Design of Fingertip Shape

It has been known [Arimoto, 2008] that, in a simple case of “ball-plate" pinching, a solution to
the closed-loop dynamics corresponding to (23) under some holonomic constraints of rolling
contacts converge to a steady (equilibrium) state that minimizes the potential P(X) under the
constraints. However, a stabilization problem of control signals like (16) still remains unsolved
or rather has not yet been tackled not only in a general setup of arbitrary geometry like the
situation shown in Fig. 1 but also in a little more simple case that the object to be grasped is a
parallelepiped but the fingertip shapes are arbitrary. In this paper, we will tackle this simple
problem and show that minimization of such an artifically introduced potential can lead to
stable grasping under some good design of fingertip shapes (see Fig. 3).
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Fig. 3. Minimization of the squared norm ‖r1 − r2‖
2 over rolling motions is attained when the

straight line P1P2 connecting the two contact points becomes parallel to the vector (r1 − r2),
that is, O1O2 becomes parallel to P1P2.

First, we remark that, since the first term of P(X) in (22) in the squared norm of the vector
−−−→
O2O1 times β/2, it must be a function only dependent on length parameters s1 and s2. Then,
it will be shown that minimization of the squared norm ‖r1 − r2‖

2 over rolling contact motions
is attained when the straight line P1P2 connecting the two contact points becomes parallel to
the vector (r1 − r2). That is, U(X) (= (β/2)‖r1 − r2‖

2) is minimized when O1O2 becomes
parallel to P1P2. To show this directly from the set of Euler-Lagrange’s equations (1), (2), and
(19) seems difficult even in this case. Instead, we remark that (r1 − r2) can be expressed in
terms of length parameters si for i = 1, 2 as follows:

r1 − r2 = −Π1γ1 + Π2γ2 + Π0(γ01 − γ02) (25)

where Πi ∈ SO(2) denotes the rotational matrix of Oi-XiYi to be expressed in the frame coor-
dinates O-xy. Since the object is rectangular, all b0i and n0i for i = 1, 2 are invariant under the
change of si for i = 1, 2. Therefore, as seen from Fig. 3, if the object width is denoted by lw and
zero points of s1 and s2 are set as shown in Fig. 3, then it is possible to write (25) as follows:

r1 − r2 = (s1 − s2)b̄01 + (−b
T
1 γ1 + b

T
2 γ2)b̄01 − lwn̄01 + (nT

1 γ1 + n
T
2 γ2)n̄01 (26)

Since b̄01 ⊥ n̄01, U(X) can be expressed as

U(X) =
β

2
‖r1 − r2‖

2 =
β

2

{

d2(s1, s2) + l2(s1, s2)
}

= U(s1, s2) (27)

where

d(s1, s2) = s1 − s2 − b
T
1 γ1 + b

T
2 γ2 (28)

l(s1, s2) = −lw + (nT
1 γ1 + n

T
2 γ2) (29)

Note that the artificial potential U(X) can be regarded as a scalar function defined in terms of
length parameters s1 and s2. When minimization of U(s1, s2) over some parameter intervals
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si ∈ Ii = (ai, bi) is considered for i = 1, 2, it is important to note that the vector (r1 − r2) is
originally subject to the constraint

V(s1, s2) = (r1 − r2)
T

n̄01 − n
T
1 γ1 − n

T
2 γ2 − n

T
01γ01 − n

T
02γ02 = 0 (30)

which is obtained by subtraction of Qn2 from Qn1 defined in (5) and (6). Hence, by introducing
a Lagrange multiplier η, minimization of the function

W(s1, s2; η) = U(s1, s2)+ ηV(s1, s2) (31)

must be equivalent to that of U(X). Then it follows that

∂W

∂si
= (−1)iβκi(r1 − r2)

Tξ̄i + ηκib
T
i γi, i = 1, 2 (32)

where we define, for abbreviation,

ξ̄i = (nT
i γi)b̄0i + (bT

i γi)n̄0i, i = 1, 2 (33)

The derivation of this equation is discussed in [Arimoto et al. 2009c]. At this stage, we re-
mark that the vectors ξ̄i for i = 1, 2 appear at contact points P1 and P2 as indicated in Fig. 3.
Evidently from the right hand side of (32), if we set

η = β(r1 − r2)
T

n̄01

(

= −β(r1 − r2)
T

n̄02

)

(34)

and at the same time

(r1 − r2)
T

b̄0i = 0, i = 1, 2 (35)

then (32) implies

∂W

∂si
= 0, i = 1, 2 (36)

In view of the geometrical meaning of (35) that the vector
−−−→
O2O1 ⊥ b̄0i, when r1 − r2 becomes

perpendicular to b0i from some starting posture by rolling contact motion, si for i = 1, 2 must

have the same value s∗ and b
T
1 γ1 = b

T
2 γ2. That is, satisfaction of the conditions

s1 = s2 = s∗, b
T
1 γ1 = b

T
2 γ2 (37)

is equivalent to that
−−−→
O2O1 becomes parallel to

−−→
P2P1 as shown in Fig. 3. Under (37),

∂W

∂si

∣

∣

∣

∣

si=s∗
= 0, i = 1, 2 (38)

Finally, it is important to check the positivity of the Hessian matrix H = (∂2U/∂si∂sj). Bearing
in mind the form of (32) together with (34), we obtain [Arimoto et al. 2009c]

∂2U

∂si∂si

∣

∣

∣

∣

si=s∗
= κi(−1)iβ(r1 − r2)

T
n̄0i(κin

T
i γi + b

T
i γ′

i)

= −βl(s1, s2)κ
2
i

(

1

κi
+ n

T
i γi

)

, i = 1, 2 (39)
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and

∂2U

∂s1∂s2

∣

∣

∣

∣

si=s∗
= 0 (40)

where l(s1, s2) is defined by (29). Since l(s1, s2) < 0 from the geometrical meaning of the
situation shown in Fig. 3, it is possible to conclude that the potential function U(s1, s2) is
minimized at the posture satisfying (37) provided that

1

κi(si)
> −n

T
i (si)γi(si), i = 1, 2 (41)

for all si belonging to (s∗ − δi, s∗ + δi) with some δi > 0 for i = 1, 2.
Geometric and physical meanings of the condition of (41) will be discussed more in detail in
a future paper [Arimoto et al., 2009c].

1.5 Derichlet-Lagrange Stability for Pinching a Rectangular Object

In this section, we show that, when the line connecting the contact points P1 and P2 becomes
parallel to the line O1O2 as shown in Fig. 3, P(X) is minimized under the constraint of equal-
ities (5) and (6) and at the same time any solution to the set of closed-loop dynamics (1), (2),
and (19) under rolling constraints (5) and (6) converges asymptotically to such an equilibrium
posture, provided that the solution trajectory starts in a neighborhood of the equilibrium state.
To do this, define

{

∆ fi = fi + βl(s1, s2) (42)

∆λi = λi − (−1)iβd(s1, s2) (43)

and note that

− (−1)iβJT
i (r1 − r2) = βJT

i

{

ln̄0i − (−1)idb̄0i

}

, i = 1, 2 (44)

Substituting (44) into (19) and referring to (42) and (43) yield

Gi q̈i +

{

1

2
Ġi + Si

}

q̇i + ci q̇i + ∆ fi

{

JT
i n̄0i − (−1)i(bT

i γi)ei

}

+∆λi

{

JT
i b̄0i − (−1)i(nT

i γi)ei

}

+ ∆Niei = 0, i = 1, 2 (45)

where

∆Ni = β
{

(−1)il(bT
i γi)− d(nT

i γi)
}

+ αi {pi − pi(0)} , i = 1, 2 (46)

On the other hand, (1) and (2) can be rewritten into the forms:

Mẍ − ∆ f1n̄01 − ∆ f2n̄02 − ∆λ1b̄01 − ∆λ2b̄02 = 0 (47)

Iθ̈ − ∆ f1(b
T
01γ01)+ ∆ f2(b

T
02γ02)+ ∆λ1(n

T
01γ01)− ∆λ2(n

T
02γ02)+ SN = 0 (48)

where

SN = βl(bT
01γ01 − b

T
02γ02)− βd(nT

01γ01 + n
T
02γ02) = β {(s1 − s2)l + lwd} (49)
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Now it is possible to show that the set of equations (47) to (49) together with (7) can be re-
garded as a set of Euler-Lagrange equations obtained by applying the variational principle to
the Lagrangian

L = K(X, Ẋ)− U(s1, s2)+ ∑
i=1,2

(∆ fiQni + ∆λiQbi) (50)

in which the external forces of damping ci q̇i for i = 1, 2 through finger joints are taken into
account. In fact, from (27) to (29) it follows that

dU(s1, s2)

dt
= ∑

i=1,2

dUi

dsi

dsi

dt
= ∑

i=1,2

(−1)iβ
{

(nT
i γi)d − (−1)i(bT

i γi)l
}

κi
dsi

dt

= ∑
i=1,2

β
{

(nT
i γi)d − (−1)i(bT

i γi)l
}

(θ̇ − ṗi) (51)

= β
{

n
T
1 γ1 + n

T
2 γ2)d + (bT

1 γ1 − b
T
2 γ2)l

}

θ̇ + ∑
i=1,2

βNi ṗi (52)

where Ni is defined as

Ni = (−1)i(bT
i γi)l − (nT

i γi)d (53)

By using (28) and (29), (52) can be written as

dU(s1, s2)

dt
= β {(l + lw)d + (s1 − s2 − d)l} θ̇ + ∑

i=1,2

βNi ṗi

= SN θ̇ + ∑
i=1,2

βNie
T
i q̇i (54)

Thus, we conclude that from (46) the variation of P takes the form

dP = d
[

U + ∑
αi

2
{pi − pi(0)}2

]

= SNdθ + ∑
i=1,2

[βNi + αi {pi − pi(0)}]dpi

= SNdθ + ∑
i=1,2

∆Nie
T
i dqi (55)

The last term of the left hand side of (48) comes directly from the first term of the right hand
side of (55) in the variational form of the potential P(X, s1, s2). The last term ∆Niei also comes
directly from the last term of (55). Thus, it is possible to prove that, if the posture of the
fingers-object system satisfying the condition that O1O2 is parallel to P1P2 as shown in Fig. 3
is an isolated equilibrium state, then the posture must be asymptotically stable because the
system is fully dissipated (see [Arimoto, 2010]), no matter how the system is holonomically
constrained. If both the fingers are of single degrees-of-freedom, then the total degrees-of-
freedom of the system becomes single and therefore the equilibrium state is isolated. In a case
of redundant degrees-of-freedom system like the setup illustrated in Fig. 1, it is necessary
to extend the so-called Dirichlet-Lagrange stability theorem (see [Arimoto et al., 2009c] and
[Arimoto, 2010a]) to a system with redundancy in degree-of-freedom together with holonomic
constraints. Such an extension of the theorem is possible as already discussed in a special
class of robot control problems (see [Arimoto, 2007]), but the details are too mathematically
sophysticated and therefore will be discussed in a future paper.
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Fig. 4. Robot finger pinching an object pivoted at a fixed point Om.

1.6 Conclusions

Modeling and control of precision prehension of 2-D objects by a pair of planar robot fingers
with an arbitrary fingertip geometry are discussed. Stability of a control signal based upon the
fingers-thumb opposition is analyzed by extending the Dirichlet-Lagrange stability theorem
in a case that the object has parallel flat surfaces.
To find an effective control scheme that stabilizes grasping of an object with an arbitrary ge-
ometry remains unsolved, even in the case of 2-D grasping.

2. Simulation of 2-D Grasping under Physical Interaction of Rolling between Arbi-

trary Smooth Contour Curves

2.1 Introduction

Numerical simulation of motions of a rolling contact between two 2-dimensional (2-D) rigid
bodies with an arbitrary smooth contour is carried out by using an extended constraint stabi-
lization method (CSM), in order to testify the physical validity of the Euler-Lagrange equation
of rolling contact motion. To gain a physical insight into the problem, a simpler control prob-
lem is treated in relation to stabilization of a rotational motion of a rigid body pivoted around
a fixed point in a horizontal plane by using a planar robot with two joints. A CSM is applied
extensively to the derived Euler-Lagrange equation that is characterized by an arclength pa-
rameter, that is commonly used to specify the contact position on the object contour and the
fingertip contour. In parallel to the Euler-Lagrange equation, a first-order differential equation
of the arclength parameter must be integrated simultaneously in order to update the position
of the rolling contact (see [Yoshida et al., 2009a and 2009b]).

2.2 A Testbed Problem of Stabilization for Rolling Contact Motion

In order to gain a physical and intuitive insight into a rolling contact phenomenon between
two rigid bodies in a horizontal plane, a simple mechanical setup depicted in Fig. 4 is consid-
ered. The robot finger has two joints and its fingertip is shaped by an arbitrary smooth contour
curve. The object pivots around the fixed point Om (= (x, y)) and has a contour with an arbi-
trary geometry. It is assumed that motion of the overall fingers-object system is restricted to
the horizontal plane and therefore the effect of gravity is ignored. Denote the joint vector of
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Fig. 5. Geometrical relationship between local coordinates Om-XY and O01-X0Y0.

finger joint angles by q = (q1, q2)
T and the orientation angle of the object by θ. As shown in

Fig. 4, O-xy expresses the inertial frame, Om-XY the local coordinates attached to the object,
and O01-X1Y1 the local coordinates of the fingertip as shown in Fig. 5. Suppose that the object
contour is described by a curve γ(s) = (X(s), Y(s))T with the aid of the arclength parameter
s as shown in Fig. 4 and Fig. 5. At the same time, define the unit tangent b1(s) and the unit
normal n1(s) at the contact point P1B as shown in Fig. 5. Similarly, define b0(s) and n0(s) at
the contact point P1A on the contour curve γ0(s) = (X0(s), Y0(s)) of the fingertip. Since we
assume that the two contact points P1A and P1B must coincide at a single common point P1

without mutual penetration and the two contours share the same tangent at the contact point,
n0 = −n1 and b0 = b1 as seen in Fig. 5. If we define angles θ1(s) and ψ0(s) by

θ1(s) = arctan{X′(s)/Y′(s)} (56)

ψ0(s) = arctan{X′
0(s)/Y′

0(s)} (57)

then unit tangents and normals can be expressed as

b1 =

(

sin(θ + θ1)
cos(θ + θ1)

)

, b0 =

(

− cos(q1 + q2 + ψ0)
sin(q1 + q2 + ψ0)

)

(58)

n1 =

(

cos(θ + θ1)
− sin(θ + θ1)

)

, n0 = −

(

sin(q1 + q2 + ψ0)
cos(q1 + q2 + ψ0)

)

(59)

where we denote the derivative of X(s) in s by X′(s) (= dX(s)/ds) and similarly the deriva-
tives of Y(s), X0(s), and Y0(s) by Y′(s), X′

0(s), and Y′
0(s). Further, it is important to introduce

the following four quantities that can be determined from the local fingertip and object ge-
ometries (see Fig. 6):

lb0(s) = X0(s) sin ψ0 + Y0(s) cos ψ0 (60)

lb1(s) = −X(s) sin θ1 − Y(s) cos θ1 (61)

ln0(s) = X0(s) cos ψ0 − Y0(s) sin ψ0 (62)

ln1(s) = −X(s) cos θ1 + Y(s) sin θ1 (63)
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As discussed in detail by [Arimoto et al., 2009a], the rolling contact constraint is composed of
the two algebraic equations:

R = (x01 − x) sin(θ + θ1) + (y01 − y) cos(θ + θ1) + lb0(s)+ lb1(s) = 0 (64)

Q = (x01 − x) cos(θ + θ1)− (y01 − y) sin(θ + θ1) + ln0(s)+ ln1(s) = 0 (65)

Note that these two equalities express the geometrical relations described in the following
ways (see Fig. 6):

P′
0P′

1 = lno + ln1 (66)

OmP′
1 + P′

0O01 = lb0 + lb1 (67)

Further, from the definition of directional derivatives of b0 and b1 that coincide at the contact
point, the arclength parameter should be updated through the following first-order differen-
tial equation [Arimoto et al., 2009a]:

{κ0(s)+ κ1(s)}
ds

dt
= (q̇1 + q̇2 − θ̇) (68)

where κ0(s) denotes the curvature of the fingertip contour curve and κ1(s) that of the object
contour. These quantities can be calculated from the quantities of the second fundamental
form as follows:

κ0(s) = −X′′
0 (s)Y0(s)+ X′

0(s)Y
′′
0 (s) (69)

κ1(s) = X′′(s)Y′(s)− X′(s)Y′′(s) (70)

The total kinetic energy of the system is given by the form

K =
1

2
q̇TG(q)q̇ +

1

2
Iθ̇2 (71)

where G(q) stands for the inertia matrix of the finger and I for the inertia moment of the object
rigid body around the pivotal axis at Om. Then, by applying the variational principle for the
Lagrangian

L = K − f Q − λR (72)
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the following Euler-Lagrange equation is obtained [Arimoto et al., 2009a]:

Iθ̈ + f lb1 − λln1 = 0 (73)

G(q)q̈ +

{

1

2
Ġ(q) + S(q, q̇)

}

q̇ + f {JT
01(q)n1 + lb0e}

+λ{JT
01(q)b1 − ln0e} = u (74)

where e = (1, 1)T and f and λ signify Lagrange’s multipliers corresponding to constraints
Q = 0 and R = 0 respectively. Finally, we introduce the control signal

u = −cq̇ − fd

r
JT
01(q)

(

x01 − x
y01 − y

)

(75)

where c stands for a positive damping constant and fd/r a positive constant with the physical
dimension [N/m]. It should be noted [Arimoto et al., 2009a] that by substituting u of (75) into
(74) and rewriting (73) and (74), we obtain the closed-loop dynamics of the system described
by

Iθ̈ + ∆ f
∂Q

∂θ
+ ∆λ

∂R

∂θ
+

fd

r
N1 = 0 (76)

G(q)q̈ +

{

1

2
Ġ + S

}

cq̇ + ∆ f
∂Q

∂q
+ ∆λ

∂R

∂q
− fd

r
N1e = 0 (77)

where






∆ f = f +
fd

r
Q1, ∆λ = λ +

fd

r
R1

N1 = lb0Q1 − ln0R1 = −lb0ln1 + ln0lb1

(78)

and

Q1 = −ln0(s)− ln1(s), R1 = lb0(s) + lb1(s) (79)

2.3 Numerical Simulation

We carry out numerical simulations in order to verify the validity of the derived mathemati-
cal model and the effectiveness of the control signal. The physical parameters of the overall
system are given in Table 1 and the control input parameters are in Table 2. As an object with
an arbitrary geometry, the contour carve γ(s) = (X(s), Y(s)) is given by a function described
by

X(s) = −0.03 +

√

1 + 4 × 502 × (s − 3.363 × 10−3)2

2 × 50
(80)

Y(s) =
A sinh(2 × 50 × (2 − 3.363 × 10−3))

2 × 50
(81)

The fingertip contour curve is given by a function described as

X0(s) = 0.035 −
√

1 + 4 × 202 × s

2 × 20
(82)

Y0(s) =
A sinh(2 × 20 × s)

2 × 20
(83)

www.intechopen.com



Computational Modeling, Visualization,  
and Control of 2-D and 3-D Grasping under Rolling Contacts 339

l11 length 0.065 [m]

l12 length 0.065 [m]

m11 weight 0.045 [kg]

m12 weight 0.040 [kg]

I object inertia moment 6.6178 ×10−6 [kgm2]

Table 1. Physical parameters of the fingers and object.

fd internal force 0.500 [N]

c damping coefficient 0.006 [Nms]

r constant value 0.010 [m]

γ f 1 CSM gain 1500

γλ1 CSM gain 3000

ω f 1 CSM gain 225.0 × 104

ωλ1 CSM gain 900.0 × 104

Table 2. Parameters of control signals & CSM gains.

Both the contour curves are depicted in Fig. 7. The pair of the second-order differentia equa-
tions (73) and (74) together with (75) and the other pair of holonomic constraints expressed by
(64) and (65) are combined into a CSM form by introducing a pair of CSM gains γ f 1 and ω f 1

and another pair of γλ1 and ωλ1 that are given in Table 2. In the CSM form, the derivative
of length parameter s in t is required, which is obtained by the update equation of the length
parameter shown in (68). As discussed in the recent paper [Arimoto et al., 2009b], the equi-
librium sate is realized when the line O01Om meets the contact point P1. In other words, the

artificial potential U(s) =
fd

2r {(lb1 + lb0)
2 +(ln0 + ln1)

2} is minimized at the position satisfying

N1 = 0, that is, the line O01Om meets the contact point P1.
We show the initial pose of the system and another pose of the system after 3.0 [s] in Fig. 8.
The initial pose is obtained by solving the inverse kinematics problem and the initial angular
velocities q̇i (i = 1, 2) and θ̇ are set zero in this simulation. The trasient responses of all phys-
ical variables are shown in Figs. 9 to 17. As seen from Fig. 11, N1 tends to zero as t increases
and, in parallel to this fact, the value of the artificial potential U(s) tends to its minimum as t
increases as shown in Fig. 18. As predicted from Fig. 8 (b), the system’s position tends to con-
verge to the posture at which the line connecting the fingertip center O and the object center
Om meets the contact point P1.

2.4 Conclusions

A preliminary result of numerical simulation of control of rolling contact motions between two
2-D rigid bodies with an arbitrary contour curve is presented. In this note, the two contour
curves are given in an analytically well-defined form. Nevertheless, to construct a numerical
simulator for the purpose of its preactical use, it is necessary to design another numerical
simulator that can calculate numerical quantities of the second fundamental form when the
concerned contour curves are given by a set of numerical data points. Then, the problem for
finding a unique contact point between the two contour curves without penetration becomes
crucial in the design of such a practically useful simulator.
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Fig. 7. The local coordinates of the fingertip and the object.

(a) Initial pose (b) After 3 seconds

Fig. 8. Motion of pinching a 2-D object with arbitrary shape.

3. Modeling of 3-D Grasping under Rolling Contacts between Arbitrary Smooth

Surfaces

3.1 Introduction

A possible extension of modeling and control of 2-D (2-dimensional) grasping of a rigid object
by means of a pair of planar robot fingers to 3-D grasping under rolling contacts is discussed,
under the circumstance of an arbitrary geometry of surfaces of the robot fingertips and a given
3-D rigid object.
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3.2 Mathematical Modeling of 3-D Grasping under Rolling Contacts

Very recently in the previous papers [Arimoto et al., 2009a and 2009b], a complete set of Euler-
Lagrange equations of motion of 2-dimensional grasping under rolling contact constraints is
given in a wrench space form from the standpoint of a new definition of rolling contact con-
straints. The rolling contact between two rigid bodies with smooth surfaces is now interpreted
as a condition that the contact points coincide at a single point and share a common tangent
at the contact point. This standpoint was first proposed in differential geometry by Nomizu
[Nomizu, 1978], that reflects in a two-dimensional case a well-known theorem on curves that,
given two smooth planar curves with the same curvature along their arclengths respectively,
the one can coincide with another by a homogeneous transformation. The recent works [Ari-
moto et al., 2009a and 2009b] show that such a mathematical observation can be extended
more to the dynamics and control of physical interaction between 2-D rigid bodies with an
arbitrary geometry.
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This note is concerned with a certain possibility of extending this standpoint to the problem
of modeling and control of 3-D grasping under rolling contact constraints (see Fig. 19). Fortu-
nately, it is also well-known in geometry of curves and surfaces that, given two smooth curves
in the 3-D Enclidean space characterized by the common arclength parameters, the curves can
coincide by finding an adequate homogeneous transformation if and only if the curves have
the same curvature and torsion along their arclength parameters. Again in the work [Nomizu,
1978], Nomizu showed a mathematical model of rolling an n-D submanifold M on another n-
D submanifold N in a Euclidean space and obtained a kinematic interpretation of the second
fundamental form. Thus, we observe that, even in the case of 3-D motion of rolling contacts,
each locus of points of the contact between the two surfaces can be characterized by a curve
γi(s) lying on each corresponding surface Si (see Fig. 20). Thus, a rolling contact as a physical
interaction of a rigid object with a rigid fingertip is interpreted by the following two condi-
tions:
A-1) Given a curve γ1(s1) as a locus of points of the contact on S1 and another curve γ0(s0) as
a locus of contact points on S0, the two curves coincide at contact point P1 and share the same
tangent plane at P1 (see Fig. 20).
A-2) During any continuation of rolling contact, the two curves γ0(s0) and γ1(s1) can be de-
scribed in terms of the same length parameter s in such a way that s0 = s + c0 and s1 = s + c1,
where c0 and c1 are constant.
The details of derivation of the Euler-Lagrange equation of grasping motion of the fingers-
object system will be presented in the paper [Arimoto, 2010b].

3.3 Computational Backgrounds for Design of a Numerical Simulator

In the case of 3-D grasping, the core of a numerical simulator for numerically evaluating the
loci of contact points between the rigid bodies must be an algorithmic tool for determining the
unique contact point together with finding the common tangent and the normal to the tangent
between the two surfaces whose data are given as a huge amount of data points. A common
contact point should be uniquely determined from the set of data points without penetrating
through each other, in conjunction with finding the common tangent and normal at the contact
point. Numerical evaluation of the normal curvatures along the loci γi(s) on the surfaces is
also indispensable for contruction of a numerical simulator. Once the numerical data of all
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Fig. 20. A locus of points of contact on the left hand fingerend surface S1 is denoted by γ1(s)
and that on the object surface by γ0(s). If there does not arise any slipping, both loci can be
traced by the common length parameter s.

the loci γi(s) are calculated through the Euler-Lagrange equation, all the geometrical data
of motion of the robot fingers and the object can be recovered from the kinematics and the
equalities of rolling contact constraints. Then, visualization is a matter of course of computer
graphics of curves and surfaces.
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