20 research outputs found

    Electrical characterization of organic based transistors: stability issues {

    No full text
    An investigation into the stability of metal insulator semiconductor (MIS) transistors based on asexithiophene is reported. In particular the kinetics of the threshold voltage shift upon application of a gate bias has been determined. The kinetics follow a stretched-hyperbola type behavior, in agreement with the formalism developed to explain metastability in amorphous-silicon thin film transistors. Using this model, quantification of device stability is possible. Temperaturedependent measurements show that there are two processes involved in the threshold voltage shift, one occurring at T&220 K and the other at T&300 K. The latter process is found to be sample dependent. This suggests a relation between device stability and a-sexithiophene deposition parameters

    Collective orientation dynamics in semi-rigid polymers

    No full text

    GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence

    Get PDF
    On August 14, 2017 at 10:30:43 UTC, the Advanced Virgo detector and the two Advanced LIGO detectors coherently observed a transient gravitational-wave signal produced by the coalescence of two stellar mass black holes, with a false-alarm rate of less than or similar to 1 in 27 000 years. The signal was observed with a three-detector network matched-filter signal-to-noise ratio of 18. The inferred masses of the initial black holes are 30.5(-3.0)(+5.7)M(circle dot) and 25.3(-4.2)(+2.8) M-circle dot (at the 90% credible level). The luminosity distance of the source is 540(-210)(+130) Mpc, corresponding to a redshift of z = 0.11(-0.04)(+0.03). A network of three detectors improves the sky localization of the source, reducing the area of the 90% credible region from 1160 deg(2) using only the two LIGO detectors to 60 deg(2) using all three detectors. For the first time, we can test the nature of gravitational-wave polarizations from the antenna response of the LIGO-Virgo network, thus enabling a new class of phenomenological tests of gravity

    GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral

    Get PDF
    On August 17, 2017 at 12:41:04 UTC the Advanced LIGO and Advanced Virgo gravitational-wave detectors made their first observation of a binary neutron star inspiral. The signal, GW170817, was detected with a combined signal-to-noise ratio of 32.4 and a false-alarm-rate estimate of less than one per 8.0 x 10(4) years. We infer the component masses of the binary to be between 0.86 and 2.26 M-circle dot, in agreement with masses of known neutron stars. Restricting the component spins to the range inferred in binary neutron stars, we find the component masses to be in the range 1.17-1.60 M-circle dot, with the total mass of the system 2.74(-0.01)(+0.04) M-circle dot. The source was localized within a sky region of 28 deg(2) (90% probability) and had a luminosity distance of 40(-14)(+8) Mpc, the closest and most precisely localized gravitational-wave signal yet. The association with the gamma-ray burst GRB 170817A, detected by Fermi-GBM 1.7 s after the coalescence, corroborates the hypothesis of a neutron star merger and provides the first direct evidence of a link between these mergers and short gamma-ray bursts. Subsequent identification of transient counterparts across the electromagnetic spectrum in the same location further supports the interpretation of this event as a neutron star merger. This unprecedented joint gravitational and electromagnetic observation provides insight into astrophysics, dense matter, gravitation, and cosmology
    corecore