373 research outputs found
K0 form factor and charge radius in a covariant Salpeter model
The electromagnetic form factor for the is calculated in a covariant
formulation of the Salpeter equation for - bound states, which has
been presented recently for the mass spectrum, decay properties and form
factors of the light pseudoscalar and vector mesons. The charge radius
dependence on the difference between strange and down constituent quark mass is
discussed.Comment: 5 pages including 3 uuencoded figures, RevTe
Analysis of the instantaneous Bethe-Salpeter equation for -bound-states
We investigate the structure of the instantaneous Bethe-Salpeter equation for
-bound states in the general case of unequal quark masses and
develop a numerical scheme for the calculation of mass spectra and
Bethe-Salpeter amplitudes. In order to appreciate the merits of the various
competing models beyond the reproduction of the mass spectra we present
explicit formulas to calculate electroweak decays. The results for an explicit
quark model will be compared to experimental data in a subsequent paperComment: 11 pages, RevTeX, TK-93-1
Instantaneous Bethe-Salpeter equation: utmost analytic approach
The Bethe-Salpeter formalism in the instantaneous approximation for the
interaction kernel entering into the Bethe-Salpeter equation represents a
reasonable framework for the description of bound states within relativistic
quantum field theory. In contrast to its further simplifications (like, for
instance, the so-called reduced Salpeter equation), it allows also the
consideration of bound states composed of "light" constituents. Every
eigenvalue equation with solutions in some linear space may be (approximately)
solved by conversion into an equivalent matrix eigenvalue problem. We
demonstrate that the matrices arising in these representations of the
instantaneous Bethe-Salpeter equation may be found, at least for a wide class
of interactions, in an entirely algebraic manner. The advantages of having the
involved matrices explicitly, i.e., not "contaminated" by errors induced by
numerical computations, at one's disposal are obvious: problems like, for
instance, questions of the stability of eigenvalues may be analyzed more
rigorously; furthermore, for small matrix sizes the eigenvalues may even be
calculated analytically.Comment: LaTeX, 23 pages, 2 figures, version to appear in Phys. Rev.
Autophagy in major human diseases
Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders
The stability of the spectator, Dirac, and Salpeter equations for mesons
Mesons are made of quark-antiquark pairs held together by the strong force.
The one channel spectator, Dirac, and Salpeter equations can each be used to
model this pairing. We look at cases where the relativistic kernel of these
equations corresponds to a time-like vector exchange, a scalar exchange, or a
linear combination of the two. Since the model used in this paper describes
mesons which cannot decay physically, the equations must describe stable
states. We find that this requirement is not always satisfied, and give a
complete discussion of the conditions under which the various equations give
unphysical, unstable solutions
Electromagnetic Meson Form Factors in the Salpeter Model
We present a covariant scheme to calculate mesonic transitions in the
framework of the Salpeter equation for -states. The full Bethe
Salpeter amplitudes are reconstructed from equal time amplitudes which were
obtained in a previous paper\cite{Mue} by solving the Salpeter equation for a
confining plus an instanton induced interaction. This method is applied to
calculate electromagnetic form factors and decay widths of low lying
pseudoscalar and vector mesons including predictions for CEBAF experiments. We
also describe the momentum transfer dependence for the processes
.Comment: 22 pages including 10 figure
Monitoring Antigen Processing for MHC Presentation via Macroautophagy
Macroautophagy has recently emerged as an important catabolic process involved not only in innate immunity but also in adaptive immunity. Initially described to deliver intracellular antigens to MHC class II loading compartments, its molecular machinery has now also been described to impact the delivery of extracellular antigens to MHC class II loading compartments through the noncanonical use of the macroautophagy machinery during LC3-associated phagocytosis (LAP). Therefore, in pathological situations (viral or bacterial infections, tumorigenesis) the pathway might be involved in shaping CD4 T cell responses.In this chapter we describe three basic experiments for the monitoring and manipulation of macroautophagic antigen processing toward MHC class II presentation through the canonical pathway. Firstly, we will discuss how to monitor autophagic flux and autophagosome fusion with MHC class II loading compartments. Secondly, we will show how to target proteins to autophagosomes in order to monitor macroautophagy dependent antigen processing via their enhanced presentation on MHC class II molecules to CD4 T cells. And finally, we will describe how macroautophagy can be silenced in antigen presenting cells, like human monocyte-derived dendritic cells (DCs)
Support of generalized parton distributions in Bethe-Salpeter models of hadrons
The proper support of generalized parton distributions from relativistic
constituent quark models with pointlike constituents is studied. The correct
support is guaranteed when the vertex function does not depend on the relative
minus-momentum. We show that including quark interactions in models with
pointlike constituent quarks might lead to a support problem. A computation of
the magnitude of the support problem in the Bonn relativistic constituent quark
model is presented.Comment: 8 pages, 4 figures. v2: specific calculation included, references and
figure added. Submitted to Phys. Lett.
- …