60 research outputs found

    Funktionelle Charakterisierung des Tumor-assoziierten epithelialen Zelladhäsionsmoleküls EpCAM

    Get PDF

    Direct CP Violation in K_L --> \pi^0 e^+e^- Beyond Leading Logarithms

    Full text link
    We analyze the direct CP violation in the rare decay K_L --> Pi^0 e+e- with QCD effects taken into account consistently in the next-to-leading order. We calculate the two-loop mixing between the four-quark \Delta S=1 operators and the operator Q_7V = (sd)_(V-A)(ee)_V in the NDR and HV renormalization schemes. Using the known two-loop anomalous dimension matrix of the four-quark operators, we find that the coefficient C_7V(\mu) depends only very weakly on \mu, renormalization scheme and \Lambda_MSbar. The next-to-leading QCD corrections enhance the direct CP violating contribution over its leading order estimate so that it remains dominant in spite of the recent decrease of |V_ub/V_cb| and |V_cb|. We expect typically BR(K_L --> \pi^0 e^+ e^-)_dir ~ 6*10^(-12), although values as high as 10^(-11) are not yet excluded.Comment: 35 pages (with 9 PostScript figures available separately), Munich Technical University preprint TUM-T31-60/94, Max-Planck Institute preprint MPI-Ph/94-1

    Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies

    Get PDF
    Background: Epithelial cell adhesion molecule (EpCAM) is frequently and highly expressed on human carcinomas. The emerging role of EpCAM as a signalling receptor and activator of the wnt pathway, and its expression on tumor-initiating cells, further add to its attractiveness as target for immunotherapy of cancer. Thus far, five conventional monoclonal IgG antibodies have been tested in cancer patients. These are murine IgG2a edrecolomab and its murine/human chimeric IgG1 antibody version, and humanized, human-engineered and fully human IgG1 antibodies 3622W94, ING-1, and adecatumumab (MT201), respectively. Here we compared all anti-EpCAM antibodies in an attempt to explain differences in clinical activity and safety. Methods: We recombinantly produced all antibodies but murine edrecolomab and investigated them for binding affinity, EpCAM epitope recognition, ADCC and CDC, and inhibition of breast cancer cell proliferation. Results: ING-1 and 3622W94 bound to EpCAM with much higher affinity than adecatumumab and edrecolomab. Edrecolomab, ING-1, and 3622W94 all recognized epitopes in the exon 2-encoded N-terminal domain of EpCAM, while adecatumumab recognized a more membrane proximal epitope encoded by exon 5. All antibodies induced lysis of EpCAM-expressing cancer cell lines by both ADCC and CDC with potencies that correlated with their binding affinities. The chimeric version of edrecolomab with a human Fc gamma 1 domain was much more potent in ADCC than the murine IgG2a version. Only adecatumumab showed a significant inhibition of MCF-7 breast cancer cell proliferation in the absence of complement and immune cells. Conclusion: A moderate binding affinity and recognition of a distinct domain of EpCAM may best explain why adecatumumab showed a larger therapeutic window in cancer patients than the two high-affinity IgG1 antibodies ING-1 and 3622W94, both of which caused acute pancreatitis

    Highly Efficient Elimination of Colorectal Tumor-Initiating Cells by an EpCAM/CD3-Bispecific Antibody Engaging Human T Cells

    Get PDF
    With their resistance to genotoxic and anti-proliferative drugs and potential to grow tumors and metastases from very few cells, cancer stem or tumor-initiating cells (TICs) are a severe limitation for the treatment of cancer by conventional therapies. Here, we explored whether human T cells that are redirected via an EpCAM/CD3-bispecific antibody called MT110 can lyse colorectal TICs and prevent tumor growth from TICs. MT110 recognizes EpCAM, a cell adhesion molecule expressed on TICs from diverse human carcinoma, which was recently shown to promote tumor growth through engagement of elements of the wnt pathway. MT110 was highly potent in mediating complete redirected lysis of KRAS-, PI3 kinase- and BRAF-mutated colorectal TICs, as demonstrated in a soft agar assay. In immunodeficient mice, MT110 prevented growth of tumors from a 5,000-fold excess of a minimally tumorigenic TIC dose. T cells engaged by MT110 may provide a potent therapeutic means to eradicate TICs and bulk tumor cells derived thereof

    Synthetische Kraftstoffe

    No full text
    corecore