88 research outputs found
The Atmospheric Monitoring Strategy for the Cherenkov Telescope Array
The Imaging Atmospheric Cherenkov Technique (IACT) is unusual in astronomy as
the atmosphere actually forms an intrinsic part of the detector system, with
telescopes indirectly detecting very high energy particles by the generation
and transport of Cherenkov photons deep within the atmosphere. This means that
accurate measurement, characterisation and monitoring of the atmosphere is at
the very heart of successfully operating an IACT system. The Cherenkov
Telescope Array (CTA) will be the next generation IACT observatory with an
ambitious aim to improve the sensitivity of an order of magnitude over current
facilities, along with corresponding improvements in angular and energy
resolution and extended energy coverage, through an array of Large (23m),
Medium (12m) and Small (4m) sized telescopes spread over an area of order
~km. Whole sky coverage will be achieved by operating at two sites: one in
the northern hemisphere and one in the southern hemisphere. This proceedings
will cover the characterisation of the candidate sites and the atmospheric
calibration strategy. CTA will utilise a suite of instrumentation and analysis
techniques for atmospheric modelling and monitoring regarding pointing
forecasts, intelligent pointing selection for the observatory operations and
for offline data correction.Comment: 6 pages. To appear in the proceedings of the Adapting to the
Atmosphere conference 201
Generalized Dynamic Scaling for Critical Relaxations
The dynamic relaxation process for the two dimensional Potts model at
criticality starting from an initial state with very high temperature and
arbitrary magnetization is investigated with Monte Carlo methods. The results
show that there exists universal scaling behaviour even in the short-time
regime of the dynamic evolution. In order to describe the dependence of the
scaling behaviour on the initial magnetization, a critical characteristic
function is introduced.Comment: Latex, 8 pages, 3 figures, to appear in Phys. Rev. Let
- …