97 research outputs found

    Significant tic reduction in an otherwise treatment-resistant patient with Gilles de la Tourette syndrome following treatment with nabiximols

    Get PDF
    Early anecdotal reports and preliminary studies suggested that cannabinoid-based medicines such as delta-9-tetrahydrocannabinol (THC) are effective in the treatment of Gilles de la Tourette syndrome (TS). We report a single case study of a patient with otherwise treatment-resistant TS successfully treated with nabiximols. Our patient was a 22-year-old male suffering from severe and complex TS. Treatment with nabiximols was commenced at a dose of 1 puff/day (= 100 μL containing 2.7 mg THC and 2.5 mg cannabidiol (CBD)) and slowly increased up to a dosage of 3 × 3 puffs/day (= 24.3 mg THC and 22.5 mg CBD). Several clinical measures for tics, premonitory urges, and global impairment were acquired before and after two weeks of treatment. Treatment with nabiximols resulted in major improvements of both tics and premonitory urges, but also global impairment and health-related quality of life according to all used measurements without causing relevant adverse effects. Our results provide further evidence that treatment with nabiximols may be effective in the treatment of patients with TS. Given the positive response exhibited by the patient highlighted in this report, further investigation of the effects of nabiximols is proposed on a larger group of patients in a clinical trial settin

    "I swear it is Tourette's!": On functional coprolalia and other tic-like vocalizations.

    Get PDF
    Coprolalia in neuropsychiatry is typically associated with tic disorders, in particular Gilles de la Tourette syndrome. To date, there has been no report of functional coprolalia. Here, we provide the clinical characteristics of 13 adolescent and adult patients with coprolalic and other functional tic-like complex vocalizations who, on the basis of these symptoms, were misdiagnosed with a primary tic disorder, most commonly Gilles de la Tourette syndrome. We describe similarities and highlight the differences from primary tic disorders in order to provide a pragmatic list of clinical clues that will facilitate correct diagnostic labeling and thereby treatment. Finally, we emphasize that the distinction between a primary and a functional tic disorder should rely on a combination of neuropsychiatric symptoms and signs and not on the presence of single, however striking, abnormal behaviors, such as coprolalia

    Tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus reflect secondary compensatory mechanisms

    Get PDF
    BACKGROUND: Despite strong evidence that the pathophysiology of Tourette syndrome (TS) involves structural and functional disturbances of the basal ganglia and cortical frontal areas, findings from in vivo imaging studies have provided conflicting results. In this study we used whole brain diffusion tensor imaging (DTI) to investigate the microstructural integrity of white matter pathways and brain tissue in 19 unmedicated, adult, male patients with TS “only” (without comorbid psychiatric disorders) and 20 age- and sex-matched control subjects. RESULTS: Compared to normal controls, TS patients showed a decrease in the fractional anisotropy index (FA) bilaterally in the medial frontal gyrus, the pars opercularis of the left inferior frontal gyrus, the middle occipital gyrus, the right cingulate gyrus, and the medial premotor cortex. Increased apparent diffusion coefficient (ADC) maps were detected in the left cingulate gyrus, prefrontal areas, left precentral gyrus, and left putamen. There was a negative correlation between tic severity and FA values in the left superior frontal gyrus, medial frontal gyrus bilaterally, cingulate gyrus bilaterally, and ventral posterior lateral nucleus of the right thalamus, and a positive correlation in the body of the corpus callosum, left thalamus, right superior temporal gyrus, and left parahippocampal gyrus. There was also a positive correlation between regional ADC values and tic severity in the left cingulate gyrus, putamen bilaterally, medial frontal gyrus bilaterally, left precentral gyrus, and ventral anterior nucleus of the left thalamus. CONCLUSIONS: Our results confirm prior studies suggesting that tics are caused by alterations in prefrontal areas, thalamus and putamen, while changes in the cingulate gyrus seem to reflect secondary compensatory mechanisms. Due to the study design, influences from comorbidities, gender, medication and age can be excluded

    PND38 COSTS AND HEALTH-RELATED QUALITY OF LIFE IN PATIENTS WITH GILLES DE LA TOURETTE'S SYNDROME

    Get PDF

    The spectrum of involuntary vocalizations in humans: A video atlas

    Get PDF
    In clinical practice, involuntary vocalizing behaviors are typically associated with Tourette syndrome and other tic disorders. However, they may also be encountered throughout the entire tenor of neuropsychiatry, movement disorders, and neurodevelopmental syndromes. Importantly, involuntary vocalizing behaviors may often constitute a predominant clinical sign, and, therefore, their early recognition and appropriate classification are necessary to guide diagnosis and treatment. Clinical literature and video‐documented cases on the topic are surprisingly scarce. Here, we pooled data from 5 expert centers of movement disorders, with instructive video material to cover the entire range of involuntary vocalizations in humans. Medical literature was also reviewed to document the range of possible etiologies associated with the different types of vocalizing behaviors and to explore treatment options. We propose a phenomenological classification of involuntary vocalizations within different categorical domains, including (1) tics and tic‐like vocalizations, (2) vocalizations as part of stereotypies, (3) vocalizations as part of dystonia or chorea, (4) continuous vocalizing behaviors such as groaning or grunting, (5) pathological laughter and crying, (6) vocalizations resembling physiological reflexes, and (7) other vocalizations, for example, those associated with exaggerated startle responses, as part of epilepsy and sleep‐related phenomena. We provide comprehensive lists of their associated etiologies, including neurodevelopmental, neurodegenerative, neuroimmunological, and structural causes and clinical clues. We then expand on the pathophysiology of the different vocalizing behaviors and comment on available treatment options. Finally, we present an algorithmic approach that covers the wide range of involuntary vocalizations in humans, with the ultimate goal of improving diagnostic accuracy and guiding appropriate treatment

    Rare Copy Number Variants in \u3cem\u3eNRXN1\u3c/em\u3e and \u3cem\u3eCNTN6\u3c/em\u3e Increase Risk for Tourette Syndrome

    Get PDF
    Tourette syndrome (TS) is a model neuropsychiatric disorder thought to arise from abnormal development and/or maintenance of cortico-striato-thalamo-cortical circuits. TS is highly heritable, but its underlying genetic causes are still elusive, and no genome-wide significant loci have been discovered to date. We analyzed a European ancestry sample of 2,434 TS cases and 4,093 ancestry-matched controls for rare (\u3c 1% frequency) copy-number variants (CNVs) using SNP microarray data. We observed an enrichment of global CNV burden that was prominent for large (\u3e 1 Mb), singleton events (OR = 2.28, 95% CI [1.39–3.79], p = 1.2 × 10−3) and known, pathogenic CNVs (OR = 3.03 [1.85–5.07], p = 1.5 × 10−5). We also identified two individual, genome-wide significant loci, each conferring a substantial increase in TS risk (NRXN1 deletions, OR = 20.3, 95% CI [2.6–156.2]; CNTN6 duplications, OR = 10.1, 95% CI [2.3–45.4]). Approximately 1% of TS cases carry one of these CNVs, indicating that rare structural variation contributes significantly to the genetic architecture of TS

    Enhancing neuroimaging genetics through meta-analysis for Tourette syndrome (ENIGMA-TS): A worldwide platform for collaboration

    Get PDF
    Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice

    Prefrontal and anterior cingulate cortex abnormalities in Tourette Syndrome: evidence from voxel-based morphometry and magnetization transfer imaging

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pathophysiological evidence suggests an involvement of fronto-striatal circuits in Tourette syndrome (TS). To identify TS related abnormalities in gray and white matter we used optimized voxel-based morphometry (VBM) and magnetization transfer imaging (MTI) which are more sensitive to tissue alterations than conventional MRI and provide a quantitative measure of macrostructural integrity.</p> <p>Methods</p> <p>Volumetric high-resolution anatomical T1-weighted MRI and MTI were acquired in 19 adult, unmedicated male TS patients without co-morbidities and 20 age- and sex-matched controls on a 1.5 Tesla neuro-optimized GE scanner. Images were pre-processed and analyzed using an optimized version of VBM in SPM2.</p> <p>Results</p> <p>Using VBM, TS patients showed significant decreases in gray matter volumes in prefrontal areas, the anterior cingulate gyrus, sensorimotor areas, left caudate nucleus and left postcentral gyrus. Decreases in white matter volumes were detected in the right inferior frontal gyrus, the left superior frontal gyrus and the anterior corpus callosum. Increases were found in the left middle frontal gyrus and left sensorimotor areas. In MTI, white matter reductions were seen in the right medial frontal gyrus, the inferior frontal gyrus bilaterally and the right cingulate gyrus. Tic severity was negatively correlated with orbitofrontal structures, the right cingulate gyrus and parts of the parietal-temporal-occipital association cortex bilaterally.</p> <p>Conclusion</p> <p>Our MRI <it>in vivo </it>neuropathological findings using two sensitive and unbiased techniques support the hypothesis that alterations in frontostriatal circuitries underlie TS pathology. We suggest that anomalous frontal lobe association and projection fiber bundles cause disinhibition of the cingulate gyrus and abnormal basal ganglia function.</p

    The effects of Gilles de la Tourette syndrome and other chronic tic disorders on quality of life across the lifespan:a systematic review

    Get PDF
    Gilles de la Tourette syndrome (GTS) and other chronic tic disorders are neurodevelopmental conditions characterized by the presence of tics and associated behavioral problems. Whilst converging evidence indicates that these conditions can affect patients' quality of life (QoL), the extent of this impairment across the lifespan is not well understood. We conducted a systematic literature review of published QoL studies in GTS and other chronic tic disorders to comprehensively assess the effects of these conditions on QoL in different age groups. We found that QoL can be perceived differently by child and adult patients, especially with regard to the reciprocal contributions of tics and behavioral problems to the different domains of QoL. Specifically, QoL profiles in children often reflect the impact of co-morbid attention-deficit and hyperactivity symptoms, which tend to improve with age, whereas adults' perception of QoL seems to be more strongly affected by the presence of depression and anxiety. Management strategies should take into account differences in age-related QoL needs between children and adults with GTS or other chronic tic disorders
    corecore