16,094 research outputs found
Influence of temperature fluctuations on plasma turbulence investigations with Langmuir probes
The reliability of Langmuir probe measurements for plasma-turbulence
investigations is studied on GEMR gyro-fluid simulations and compared with
results from conditionally sampled I-V characteristics as well as self-emitting
probe measurements in the near scrape-off layer of the tokamak ASDEX Upgrade.
In this region, simulation and experiment consistently show coherent in-phase
fluctuations in density, plasma potential and also in electron temperature.
Ion-saturation current measurements turn out to reproduce density fluctuations
quite well. Fluctuations in the floating potential, however, are strongly
influenced by temperature fluctuations and, hence, are strongly distorted
compared to the actual plasma potential. These results suggest that
interpreting floating as plasma-potential fluctuations while disregarding
temperature effects is not justified near the separatrix of hot fusion plasmas.
Here, floating potential measurements lead to corrupted results on the ExB
dynamics of turbulent structures in the context of, e.g., turbulent particle
and momentum transport or instability identification on the basis of
density-potential phase relations
Sigma Decay at Finite Temperature and Density
Sigma decay and its relation with chiral phase transition are discussed at
finite temperature and density in the framework of the Nambu-Jona-Lasinio
model. The decay rate for the process sigma -> 2 pions to first order in a
1/N_c expansion is calculated as a function of temperature T and baryon density
n_b. In particular, only when the chiral phase transition happens around the
tricritical point, the sigma decay results in a non-thermal enhancement of
pions in the final state distributions in relativistic heavy ion collisions.Comment: 6 pages, 3 Postscript figures, submitted to Chin. Phys. Let
Probing the Yb spin relaxation in YYbBaCuO by Electron Paramagnetic Resonance
The relaxation of Yb in YBaCuO () was studied
using Electron Paramagnetic Resonance (EPR). It was found that both electronic
and phononic processes contribute to the Yb relaxation. The phononic
part of the relaxation has an exponential temperature dependence, which can be
explained by a Raman process via the coupling to high-energy (500 K)
optical phonons or an Orbach-like process via the excited vibronic levels of
the Cu ions (localized Slonczewski-modes). In a sample with a maximum
oxygen doping =6.98, the electronic part of the relaxation follows a
Korringa law in the normal state and strongly decreases below .
Comparison of the samples with and without Zn doping proved that the
superconducting gap opening is responsible for the sharp decrease of Yb
relaxation in YBaCuO. It was shown that the electronic
part of the Yb relaxation in the superconducting state follows the same
temperature dependence as Cu and O nuclear relaxations despite
the huge difference between the corresponding electronic and nuclear relaxation
rates.Comment: 8 pages, 6 figure
Leading Chiral Corrections to the Nucleon Generalized Parton Distributions
Using heavy baryon chiral perturbation theory we study the leading chiral
corrections to the complete set of nucleon generalized parton distributions
(GPDs). We compute the leading quark mass and momentum transfer dependence of
the moments of nucleon GPDs through the nucleon off-forward twist-2 matrix
elements. These results are then applied to get insight on the GPDs and their
impact parameter space distributions.Comment: 26 pages, 2 figures; minor revisio
Charge-density-wave order parameter of the Falicov-Kimball model in infinite dimensions
In the large-U limit, the Falicov-Kimball model maps onto an effective Ising
model, with an order parameter described by a BCS-like mean-field theory in
infinite dimensions. In the small-U limit, van Dongen and Vollhardt showed that
the order parameter assumes a strange non-BCS-like shape with a sharp reduction
near T approx T_c/2. Here we numerically investigate the crossover between
these two regimes and qualitatively determine the order parameter for a variety
of different values of U. We find the overall behavior of the order parameter
as a function of temperature to be quite anomalous.Comment: (5 pages, 3 figures, typeset with ReVTeX4
Different techniques of distal aortic repair in acute type A dissection: impact on late aortic morphology and reoperation
Objective: To compare three different techniques of distal aortic repair in acute type A (de Bakey type I) aortic dissection and to evaluate their impact on the late morphology of the aortic arch and descending aorta and on the incidence of reoperation. Methods: From 65 patients operated on due to an acute type A aortic dissection between 1989 and 1993, 54 long-term survivors underwent clinical and radiologic follow-up examination after a mean postoperative interval of 62±16 months. The surgical techniques of distal aortic reconstruction included closed repair using Teflon felt reinforcement under moderate hypothermic cardiopulmonary bypass (n=20) and open repair in deep hypothermic circulatory arrest using either Teflon felt reinforcement (n=16) or gelatin-resorcin-formaldehyde (GRF) glue (n=18) to readapt the dissected aortic layers. In all patients, MR imaging was performed on a 1.5-T whole body imaging system for the evaluation of the morphology and function of the heart, aorta and supraaortic branches. Results: Overall hospital mortality following surgical repair of type A aortic dissection was 15.4% during this time period. The highest rate of persistent false lumen perfusion (17/20, 85%) and presence of an intimal flap in the aortic arch (13/20, 65%) was observed in patients following closed repair of acute ascending aortic dissection, whereas the lowest rate of such findings was demonstrated in patients who had undergone open distal aortic repair using biological glue (false lumen perfusion 10/18, 55% and intimal flap in the arch 2/18, 11%). Redo-surgery was significantly reduced in the open repair group using GRF glue (1/18, 5.5%) as compared with the Teflon felt repair group (3/16, 18%) and the closed repair group (6/20, 30%). Conclusions: In patients with acute type A dissection, open distal aortic repair using GRF-glue favourably influences both (1) the severity of late morphologic alterations in the downstream aorta and (2) the incidence of reoperatio
Back-to-back correlations of high p_T hadrons in relativistic heavy ion collisions
We investigate the suppression factor and the azimuthal correlation function
for high hadrons in central Au+Au collisions at GeV
by using a dynamical model in which hydrodynamics is combined with explicitly
traveling jets. We study the effects of parton energy loss in a hot medium,
intrinsic of partons in a nucleus, and broadening of jets on
the back-to-back correlations of high hadrons. Parton energy loss is
found to be a dominant effect on the reduction of the away-side peaks in the
correlation function.Comment: 4 pages, 4 figures; version to appear in Phys. Rev. Let
Numerical simulations of current generation and dynamo excitation in a mechanically-forced, turbulent flow
The role of turbulence in current generation and self-excitation of magnetic
fields has been studied in the geometry of a mechanically driven, spherical
dynamo experiment, using a three dimensional numerical computation. A simple
impeller model drives a flow which can generate a growing magnetic field,
depending upon the magnetic Reynolds number, Rm, and the fluid Reynolds number.
When the flow is laminar, the dynamo transition is governed by a simple
threshold in Rm, above which a growing magnetic eigenmode is observed. The
eigenmode is primarily a dipole field tranverse to axis of symmetry of the
flow. In saturation the Lorentz force slows the flow such that the magnetic
eigenmode becomes marginally stable. For turbulent flow, the dynamo eigenmode
is suppressed. The mechanism of suppression is due to a combination of a time
varying large-scale field and the presence of fluctuation driven currents which
effectively enhance the magnetic diffusivity. For higher Rm a dynamo reappears,
however the structure of the magnetic field is often different from the laminar
dynamo; it is dominated by a dipolar magnetic field which is aligned with the
axis of symmetry of the mean-flow, apparently generated by fluctuation-driven
currents. The fluctuation-driven currents have been studied by applying a weak
magnetic field to laminar and turbulent flows. The magnetic fields generated by
the fluctuations are significant: a dipole moment aligned with the symmetry
axis of the mean-flow is generated similar to those observed in the experiment,
and both toroidal and poloidal flux expulsion are observed.Comment: 14 pages, 14 figure
- …