34,393 research outputs found
The subgroup growth spectrum of virtually free groups
For a finitely generated group denote by the growth
coefficient of , that is, the infimum over all real numbers such
that . We show that the growth coefficient of a virtually
free group is always rational, and that every rational number occurs as growth
coefficient of some virtually free group. Moreover, we describe an algorithm to
compute
Anomalous Viscosity of an Expanding Quark-Gluon Plasma
We argue that an expanding quark-gluon plasma has an anomalous viscosity,
which arises from interactions with dynamically generated color fields. We
derive an expression for the anomalous viscosity in the turbulent plasma domain
and apply it to the hydrodynamic expansion phase, when the quark-gluon plasma
is near equilibrium. The anomalous viscosity dominates over the collisional
viscosity for weak coupling and not too late times. This effect may provide an
explanation for the apparent ``nearly perfect'' liquidity of the matter
produced in nuclear collisions at the Relativistic Heavy Ion Collider without
the assumption that it is a strongly coupled state.Comment: Final version accepted for publicatio
Supernova Simulations from a 3D Progenitor Model -- Impact of Perturbations and Evolution of Explosion Properties
We study the impact of large-scale perturbations from convective shell
burning on the core-collapse supernova explosion mechanism using
three-dimensional (3D) multi-group neutrino hydrodynamics simulations of an 18
solar mass progenitor. Seed asphericities in the O shell, obtained from a
recent 3D model of O shell burning, help trigger a neutrino-driven explosion
330ms after bounce whereas the shock is not revived in a model based on a
spherically symmetric progenitor for at least another 300ms. We tentatively
infer a reduction of the critical luminosity for shock revival by ~20% due to
pre-collapse perturbations. This indicates that convective seed perturbations
play an important role in the explosion mechanism in some progenitors. We
follow the evolution of the 18 solar mass model into the explosion phase for
more than 2s and find that the cycle of accretion and mass ejection is still
ongoing at this stage. With a preliminary value of 0.77 Bethe for the
diagnostic explosion energy, a baryonic neutron star mass of 1.85 solar masses,
a neutron star kick of ~600km/s and a neutron star spin period of ~20ms at the
end of the simulation, the explosion and remnant properties are slightly
atypical, but still lie comfortably within the observed distribution. Although
more refined simulations and a larger survey of progenitors are still called
for, this suggests that a solution to the problem of shock revival and
explosion energies in the ballpark of observations are within reach for
neutrino-driven explosions in 3D.Comment: 23 pages, 22 figures, accepted for publication in MNRA
Properties of quark matter produced in heavy ion collision
We describe the hadronization of quark matter assuming that quarks creating
hadrons coalesce from a continuous mass distribution. The pion and antiproton
spectrum as well as the momentum dependence of the antiproton to pion ratio are
calculated. This model reproduces fairly well the experimental data at RHIC
energies.Comment: 9 pages, 6 Postscript figures, typos are correcte
Correlated Emission of Hadrons from Recombination of Correlated Partons
We discuss different sources of hadron correlations in relativistic heavy ion
collisions. We show that correlations among partons in a quasi-thermal medium
can lead to the correlated emission of hadrons by quark recombination and argue
that this mechanism offers a plausible explanation for the dihadron
correlations in the few GeV/c momentum range observed in Au+Au collisions at
RHIC.Comment: 4 pages, 2 figures; v2: typo on p.4 correcte
Equation of state for distributed mass quark matter
We investigate how the QCD equation of state can be reconstructed by a
continous mass distribution of non-interacting ideal components. We find that
adjusting the mass scale as a function of the temperature leads to results
which are conform to the quasiparticle model, but a temperature independent
distribution also may fit lattice results. The fitted mass distribution tends
to show a mass gap, supporting the physical picture of the quark coalescence in
hadronization.Comment: talk given at SQM2006, 8 pages, submitted to J.Phys.
- …