44,750 research outputs found
Momentum isotropisation in random potentials
When particles are multiply scattered by a random potential, their momentum
distribution becomes isotropic on average. We study this quantum dynamics
numerically and with a master equation. We show how to measure the elastic
scattering time as well as characteristic isotropisation times, which permit to
reconstruct the scattering phase function, even in rather strong disorder.Comment: 5 pages, paper contributed to Lyon BEC 2012; v2 minor changes,
version published in prin
Echo spectroscopy of Anderson localization
We propose a conceptually new framework to study the onset of Anderson
localization in disordered systems. The idea is to expose waves propagating in
a random scattering environment to a sequence of short dephasing pulses. The
system responds through coherence peaks forming at specific echo times, each
echo representing a particular process of quantum interference. We suggest a
concrete realization for cold gases, where quantum interferences are observed
in the momentum distribution of matter waves in a laser speckle potential. This
defines a challenging, but arguably realistic framework promising to yield
unprecedented insight into the mechanisms of Anderson localization.Comment: 14 pages, 7 figures; published versio
Strong Anderson localization in cold atom quantum quenches
Signatures of strong Anderson localization in the momentum distribution of a
cold atom cloud after a quantum quench are studied. We consider a quasi
one-dimensional cloud initially prepared in a well defined momentum state, and
expanding for some time in a disorder speckle potential. Anderson localization
leads to a formation of a coherence peak in the \emph{forward} scattering
direction (as opposed to the common weak localization backscattering peak). We
present a microscopic, and fully time resolved description of the phenomenon,
covering the entire diffusion--to--localization crossover. Our results should
be observable by present day technology.Comment: 4 pages, 2 figures, published versio
The subgroup growth spectrum of virtually free groups
For a finitely generated group denote by the growth
coefficient of , that is, the infimum over all real numbers such
that . We show that the growth coefficient of a virtually
free group is always rational, and that every rational number occurs as growth
coefficient of some virtually free group. Moreover, we describe an algorithm to
compute
Symmetric Diblock Copolymers in Thin Films (I): Phase stability in Self-Consistent Field Calculations and Monte Carlo Simulations
We investigate the phase behavior of symmetric AB diblock copolymers confined
into a thin film. The film boundaries are parallel, impenetrable and attract
the A component of the diblock copolymer. Using a self-consistent field
technique [M.W. Matsen, J.Chem.Phys. {\bf 106}, 7781 (1997)], we study the
ordered phases as a function of incompatibility and film thickness in
the framework of the Gaussian chain model. For large film thickness and small
incompatibility, we find first order transitions between phases with different
number of lamellae which are parallel oriented to the film boundaries. At high
incompatibility or small film thickness, transitions between parallel oriented
and perpendicular oriented lamellae occur. We compare the self-consistent field
calculations to Monte Carlo simulations of the bond fluctuation model for chain
length N=32. In the simulations we quench several systems from to
and monitor the morphology into which the diblock copolymers
assemble. Three film thicknesses are investigated, corresponding to parallel
oriented lamellae with 2 and 4 interfaces and a perpendicular oriented
morphology. Good agreement between self-consistent field calculations and Monte
Carlo simulations is found.Comment: to appear in J.Chem.Phy
Anomalous Viscosity of an Expanding Quark-Gluon Plasma
We argue that an expanding quark-gluon plasma has an anomalous viscosity,
which arises from interactions with dynamically generated color fields. We
derive an expression for the anomalous viscosity in the turbulent plasma domain
and apply it to the hydrodynamic expansion phase, when the quark-gluon plasma
is near equilibrium. The anomalous viscosity dominates over the collisional
viscosity for weak coupling and not too late times. This effect may provide an
explanation for the apparent ``nearly perfect'' liquidity of the matter
produced in nuclear collisions at the Relativistic Heavy Ion Collider without
the assumption that it is a strongly coupled state.Comment: Final version accepted for publicatio
Supernova Simulations from a 3D Progenitor Model -- Impact of Perturbations and Evolution of Explosion Properties
We study the impact of large-scale perturbations from convective shell
burning on the core-collapse supernova explosion mechanism using
three-dimensional (3D) multi-group neutrino hydrodynamics simulations of an 18
solar mass progenitor. Seed asphericities in the O shell, obtained from a
recent 3D model of O shell burning, help trigger a neutrino-driven explosion
330ms after bounce whereas the shock is not revived in a model based on a
spherically symmetric progenitor for at least another 300ms. We tentatively
infer a reduction of the critical luminosity for shock revival by ~20% due to
pre-collapse perturbations. This indicates that convective seed perturbations
play an important role in the explosion mechanism in some progenitors. We
follow the evolution of the 18 solar mass model into the explosion phase for
more than 2s and find that the cycle of accretion and mass ejection is still
ongoing at this stage. With a preliminary value of 0.77 Bethe for the
diagnostic explosion energy, a baryonic neutron star mass of 1.85 solar masses,
a neutron star kick of ~600km/s and a neutron star spin period of ~20ms at the
end of the simulation, the explosion and remnant properties are slightly
atypical, but still lie comfortably within the observed distribution. Although
more refined simulations and a larger survey of progenitors are still called
for, this suggests that a solution to the problem of shock revival and
explosion energies in the ballpark of observations are within reach for
neutrino-driven explosions in 3D.Comment: 23 pages, 22 figures, accepted for publication in MNRA
Emission line models for the lowest-mass core collapse supernovae. I: Case study of a 9 one-dimensional neutrino-driven explosion
A large fraction of core-collapse supernovae (CCSNe), 30-50%, are expected to
originate from the low-mass end of progenitors with . However, degeneracy effects make stellar evolution modelling of
such stars challenging, and few predictions for their supernova light curves
and spectra have been presented. Here we calculate synthetic nebular spectra of
a 9 Fe CCSN model exploded with the neutrino mechanism. The model
predicts emission lines with FWHM1000 km/s, including signatures from
each deep layer in the metal core. We compare this model to observations of the
three subluminous IIP SNe with published nebular spectra; SN 1997D, SN 2005cs,
and SN 2008bk. The prediction of both line profiles and luminosities are in
good agreement with SN 1997D and SN 2008bk. The close fit of a model with no
tuning parameters provides strong evidence for an association of these objects
with low-mass Fe CCSNe. For SN 2005cs, the interpretation is less clear, as the
observational coverage ended before key diagnostic lines from the core had
emerged. We perform a parameterised study of the amount of explosively made
stable nickel, and find that none of these three SNe show the high
Ni/Ni ratio predicted by current models of electron capture SNe
(ECSNe) and ECSN-like explosions. Combined with clear detection of lines from O
and He shell material, these SNe rather originate from Fe core progenitors. We
argue that the outcome of self-consistent explosion simulations of low-mass
stars, which gives fits to many key observables, strongly suggests that the
class of subluminous Type IIP SNe is the observational counterpart of the
lowest mass CCSNe.Comment: Resubmitted to MNRAS after referee comment
Waveform sampling using an adiabatically driven electron ratchet in a two-dimensional electron system
We utilize a time-periodic ratchet-like potential modulation imposed onto a
two-dimensional electron system inside a GaAs/AlGaAs
heterostructure to evoke a net dc pumping current. The modulation is induced by
two sets of interdigitated gates, interlacing off center, which can be
independently addressed. When the transducers are driven by two identical but
phase-shifted ac signals, a lateral dc pumping current results, which
strongly depends on both, the phase shift and the waveform of the
imposed gate voltages. We find that for different periodic signals, the phase
dependence closely resembles . A simple linear model of
adiabatic pumping in two-dimensional electron systems is presented, which
reproduces well our experimental findings.Comment: 3 figure
A simple model of price formation
A simple Ising spin model which can describe the mechanism of price formation
in financial markets is proposed. In contrast to other agent-based models, the
influence does not flow inward from the surrounding neighbors to the center
site, but spreads outward from the center to the neighbors. The model thus
describes the spread of opinions among traders. It is shown via standard Monte
Carlo simulations that very simple rules lead to dynamics that duplicate those
of asset prices.Comment: Version 2: 4 pages, 4 figures; added more stringent statistical
analysis; to appear in Int. J. Modern Physics C, Vol. 13, No. 1 (2002
- …